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ABSTRACT

 The problem addressed in this thesis is that most large-scale networked virtual

environments (VE) do not possess an interface to produce dynamic, real-time interactive

simulated human motion. In order to attain a high level of realism in the virtual world, the

user must be able to dynamically interact with his environment.  For the lower body, we

find that scripted locomotive motion is adequate.  However, the same is not true for upper

body motion because humans by their nature interact with their environment largely with

their hands.

     The approach taken in this thesis is to develop an interactive interface which

achieves dynamic real-time upper body motion while not encumbering the user.  The

interface is based on inexpensive and commercially available six degree of freedom (DOF)

magnetic sensor technology and fast kinematic algorithms.

     The result of this work is the creation of a human upper body interface which can

be extended for use in any large-scale networked interactive VE, such as NPSNET.  Three

sensors are strapped onto each arm of the user, which read their position and orientation

and transmit this information to the software, which in turn produces the same motion of

the computer human icon in real-time.  An interface such as this enables participants in

networked VE to more naturally interact with the environment in real-time.
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  I. INTRODUCTION

A.  MOTIVATION

With the growing requirement for realistic interactive virtual environments (VE), there

exists a tremendous need for interactive interfaces for networked computer entities within

the world. Due to technological advances in computer power and speed, highly articulated

entities have recently been introduced into real-time networked VE [GRAN95]. However,

interfaces available to manipulate these entities are not widely used or available beyond the

research community. Currently, articulated entity motion is primarily scripted and non-

interactive [PRAT95].   We seek to change this for the upper body of human entities

because the upper body is an extremely important and dynamic source of interaction

between entities. Without a high degree of flexibility with hand and arm movements, a

human cannot effectively interact in the world. We see the need for a practical and intuitive,

yet comfortable interface for human entities in the networked VE.

B.  GOALS

The goal of this thesis is to instrument a user with sensors and allow the user to interact

with a virtual world via a virtual human whose motions are driven by natural human

motions of the user. We have focused our initial efforts on representing real-time arm

motions of humans. This significantly reduces the number of degrees of freedom (DOF) in

the problem. We utilize scripted motion to drive the lower body of our human icon.

Focusing on interactive arm motion does not result in a significant loss of realism because

interactions with the virtual world are largely carried out with the hands.

With this focus, we have four major research goals. First is the desire for real-time,

interactive human articulation. The second goal is realistic human movement, a necessity

in providing a natural, immersive virtual world in which users will feel comfortable and

will participate for extended periods of time. The third objective is to develop the most
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efficient interface possible within our technical and financial means. First, we aim to use

an inexpensive and preferably the least obtrusive motion sensing technology with which we

can produce accurate real-time human motion data.   For example, when the interface

consists of body-mounted sensors, a minimal number of sensors is desirable. We must also

ensure that our methods of computation are accurate and efficient to produce fast and

natural human motion. The last research goal is to make the interface intuitive for both the

user and the programmer. The physical interface must be comfortable and easy to use with

minimal constraints on, and rules for, the user of the VE.   Likewise, the interface software

is developed in a well-defined library approach so that it is adaptable and extendable to a

variety of interfaces.

As can be seen, there are trade-offs in achieving our goals when contending with so

many competing objectives. Design decisions are based on the advantages and

disadvantages which result from trying to achieve the most of each one of our objectives.

The research goals have been accomplished if we have maximized realism and minimized

delay in the interface.

C.  ORGANIZATION

Chapter II of this thesis reviews previous work in the area of interactive human

interfaces for large-scale virtual environments and surveys existing sensing technology.

Chapter III provides an overview of kinematics modeling of a human arm possessing

multiple degree of freedom joints and of the methods used to calculate link parameters for

such articulated figures.   The last part of this chapter provides the specific kinematic

parameters for a human arm as utilized in a prototype version written in Franz Common

Lisp (CLOS) using Allegro Common Windows. Chapter IV describes the C++ prototyping

tools, both the graphical user interface (GUI) and a non-GUI version, developed as a part

of this research, to more easily manipulate and prototype the computer human’s upper body

outside of a networked virtual world, both with forward and inverse kinematics. These tools

are particularly helpful because they serve as a testbed for interface code which could be
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ultimately implemented in a networked virtual world. [ZYDA92] Also covered in this

chapter is the partial implementation of magnetic sensors tracking a human upper body.

The last chapter, Chapter V, presents some conclusions about the work described. This is

followed by recommendations for possible future work with magnetic sensors or other

human interfaces which can be used in a large-scale networked VE.
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II.  SURVEY OF PREVIOUS WORK

A.  INTRODUCTION

Recently, the computer power available to the VE researcher has progressed to a point

where realistic environments and dynamic entities can be portrayed in real-time. This has

been particularly important to the pursuit of one of the grandest challenges in VE research,

insertion of humans into large-scale, realistic, interactive virtual worlds. While we are still

far from achieving all the goals of virtual human interactions, major strides have been

taken. [PRAT95] The virtual reality (VR) community is in continual search for effective

three-dimensional position-tracking technology that is affordable and serves as an intuitive

interface for the user. To date, available trackers have been used and evaluated by virtual

reality researchers, but performances were evaluated with mixed results [MEYE92].

Determination of a “suitable” position tracker can be made through the use of a few

important measures of performance. These measures were selected by researchers in the

virtual reality community based on results and observations of operational tests

[MEYE92]. Evaluation is based on the following five performance measures: resolution

and accuracy, responsiveness, robustness, registration, and sociability. Resolution is

defined by the smallest change the system can detect. Similarly, accuracy is the range

within which a detected position is correct. Responsiveness is determined by the measures

of sample rate, data rate, update rate and latency. Latency is the most important of all

measures of responsiveness, because it is the measure of delay between the movement of

the remotely sensed object and the report of the new position. The third performance

criterion is robustness. It is the measure of resistance to noise and other forms of signal

interference that may affect the position tracker in its operational environment. Registration

is the correspondence between actual position and orientation and reported position and

orientation. The final measure is that of sociability. This is the measure of the ability of the
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interface to track multiple objects and the range of operation at which it can successfully

function. Through these measures, the suitability of a position tracker can be determined.

[DURL95]

B.  HUMAN INTERFACE SENSING TECHNOLOGY

In recent VE applications, exciting and extremely dynamic worlds have been

made possible through the use of position trackers controlling a variety of computer

generated entities. Tracking technology can take on a variety of principles of operation.

There are four basic principles that are in use today: mechanical, optical, magnetic and

acoustic. All of these tracking principles have trade-offs, making not one of these

technologies optimal for human tracking in VE. [MEYE92] In order to achieve the research

objectives of this thesis, mechanical and magnetic sensors are the most viable technologies

currently available. A comparison of these two technologies can be seen in Table 1. Other

sensor technologies, like optical and acoustic tracking, are either still evolving or are

inappropriate for our needs. Despite the potential benefits of the optical and acoustic

technology, the magnetic and mechanical technology are currently the most appropriate for

this research.

1. Mechanical Tracker

Mechanical trackers have been in use since Sutherland incorporated them into his first

head-mounted display in 1968. Although he was the first to utilize a six DOF goniometer

to perform tracking, this technology has been used in a wide variety of applications since.

These trackers measure change in position by physically connecting the remote object to a

point of reference with jointed linkages. In VR applications, the cumbersome character of

mechanical trackers makes them undesirable and impractical. Although there are obvious

drawbacks in using mechanical sensing technology for our application, mechanical

positioners tend to be accurate, responsive, and robust, (see Table 1). However, this type of

sensor has poor sociability due to its inability to track multiple users simultaneously and its

limited range of operation. [MEYE92]
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Mechanical Magnetic

Accuracy and
resolution

Good. Good in small working volumes.
Accuracy tends to diminish as
emitter-sensor distance increases.
Accuracy adversely affected by
ferromagnetic objects in working
volume.

Responsiveness Good. Relatively low data rates. Filtering
required for distortions in emitter
field can introduce lag.

Robustness Good. Not sensitive to
errors introduced from the
environment.

Ferromagnetic objects create eddy
currents that distort the emitted
field causing ranging errors.

Registration No reports. No reports.

Sociability Limited range, two systems
cannot effectively occupy
the same working volume.

Most effective for small working
volumes. Some implementations
improve working volume by aug-
menting emitted field strength.
However, distortions from
induced eddy currents increase
with field strength. Configurations
available for allowing sensors to
share emitters in same work space.
Magnetic systems are unaffected
by non-ferromagnetic occlusion.

Comments Cumbersome. Well suited
to force feedback. Success-
ful applications in Telero-
botics.

Available off-the-shelf. Relatively
inexpensive. Most commonly used
in current VR research. Success-
fully used in simulated cockpits.

Table 1. Mechanical and Magnetic Tracking Technologies Compared
[MEYE92]
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The Individual Portal (IPORT) system developed by SARCOS Inc., Army Research

Laboratory - Human Research and Engineering Directorate (ARL-HRED), University of

Pennsylvania, and the Naval Postgraduate School (NPS) in 1993, is currently one of the

few force feedback motion devices able to insert a human into a large scale networked VE

(see Figure 1) [PRAT94, PRAT95]. Interactivity across the network is primarily achieved

by means of Distributed Interactive Simulation (DIS) Protocols [GRAN95]. IPORT has

three major hardware components: IPORT base mechanical display (from two to 18

degrees of freedom (DOF) with force feedback for lower body), a Kaiser VIM head-

mounted display, a VME Motorola 680X0-based Real-time Controller with VX Works

real-time operating system, and a hand held designator (6 DOF pointer into virtual space).

Figure  1:  IPORT Human Sensing Technology [ZYDA95]
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An optional component to the IPORT is the SARCOS Sensuit (TM). The suit utilizes

mechanical trackers to obtain the upper body movement measurements. When this suit is

used, the user’s limb and joint motions are captured and fed into the simulation system to

drive the limbs and joints of the virtual human. Although it requires some involved

calibration and is relatively cumbersome for the user, this suit provides fairly accurate

position and orientation tracking in real-time.

2. Magnetic Trackers

Magnetic trackers are the most widely used tracker in the VR community today. This

is attributed to low cost, modest but acceptable accuracy, and easy implementation.

Sociability for this type of sensor is high in a small working volume free from

ferromagnetic objects. With these factors considered, this type of sensor can be an excellent

candidate for body tracking in the VE. However, the presence of excessive iron and

increasing emitter-sensor distance can degrade accuracy ratings. There are two companies

that widely market magnetic sensors: Polhemus and Ascension. Polhemus sensors work

using alternating current (ac) while AscensionFlock of Birds utilizes direct current (dc)

[ASCE95]. Testing and implementation of magnetic sensors is the only way to ensure that

this technology is appropriate for a particular application. [MEYE92]

3. Previous Sensor Implementations

During Individual Combatant Modeling and Simulation Symposium 1994 (INCOMSS

94) at Ft. Benning, GA in February 1994, the first demonstration of the IPORT was

presented.Jack, a program developed by University of Pennsylvania’s Center for Human

Modeling and Simulation to manipulate articulated figures, was used to provide body joint

angles [BADL93a]. While this system proved successful, there was significant system

overhead involved communicating withJack. Joint information was transferred to a

separate machine via a specified port, strongly impacting performance. Also at the same

demonstration, the SARCOS sensor suit was used. It allowed the user to control the upper

body of the icon in real-time by overriding the Jack joint angles. However, the suit was felt
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by some to be cumbersome and difficult to adjust (the suit had to be recalibrated for each

individual), and measurements were often accompanied by high noise levels, resulting in

jerky motion. [PRAT94]

During May and October 1994, the I-PORT was shown again. The May 1994

demonstration utilizedJack as before. However, the October 1994 demonstration used Jack

Motion Library (JackML), a library of joint angles linked to the main application, which

was able to be queried in real-time on a single machine. Due to the number of people at the

demonstration, it was impractical to fit them with sensor suits. To solve the problem of

specifying upper body joint angles, the icon kept his hands locked on the rifle and inverse

kinematics was used to compute joint angles for the arms. While this was visually

acceptable when the soldier was engaged in combat, he was never able to put down his rifle

or to hold it with one hand, which for this environment, is impractical. [PRAT94]

Efforts at the University of Pennsylvania have been made to realistically recreate a

human posture and position with minimal sensors for a less encumbered operator. They

accomplished this by using four six DOF magnetic sensors: one on each palm, on the waist,

and on the head (shown in Figure 2). Clearly, the objectives are different in that their

paradigm requires more intensive mathematical calculations than those desired to meet the

demands of a real-time networked environment. [BADL93b]

The above considerations led to the pursuit of a solution similar to the Reality Built for

Two (RB2) system [BLAN90].   In it, VPL Research, Inc. used fiber optic cables to

measure joint angles. The result was a fully specified set of angles. Fully specified means

that complex mathematical joint angle estimation algorithms are avoided by sensing all the

needed position and orientation information.   Rather than using a suit containing fiber

optics, we propose to use a set of Polhemus sensors which can be configured to be less

cumbersome and more durable than the body suit described earlier.
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C.  SUMMARY

As seen in this discussion of position tracking technologies, five performance factors

should be considered in evaluating each type of tracker:

• resolution and accuracy

• responsiveness

• robustness

• registration

• sociability.

Depending on the application and requirements/conditions of a particular

environment, sensors can be largely chosen to meet system specifications.   Currently, as

seen with the IPORT, a human can be tracked in a networked virtual environment.

However, such systems have their limitations with respect to performance factors.

Figure  2:  A Minimally Sensed Human [BADL93b]
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Research is on-going in developing sensors that will be comfortable and effective in real-

time, large-scale networked VEs.
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III.  MODELING THE HUMAN ARM

A.  INTRODUCTION

Because the goal of this research is to manipulate a simulated human’s upper body in

a large-scale virtual environment, it is crucial to know how the human model in the target

application is constructed: what joints are available and how many degrees of freedom each

has. For this research, the human model used in our target virtual world is calledJack and

was created by personnel from the Center of Human Modeling and Simulation at the

University of Pennsylvania [BADL93a]. Although, this model has a total of 39 DOF in 17

separate joints, we are only concerned with the model’s upper body structure, and in

particular, the arms [PRAT95]. The arms of the model consist of a total of eight joints, but

the two clavicles will not be articulated in this application. Articulating the remaining six

joints of the two arms of the upper body still results in realistic arm movements. Each joint

has one or more rotational DOFs, as noted by the parenthesized numbers in Figure 3. With

this information about the human model, a design can be developed and prototyping can

begin. There is, however, some ground work which must be presented to aid in the

understanding of our prototype design.

B.  MODELING ARTICULATED BODIES

In the field of robotics, objects are described based on how they are represented and

how they move. Here important terminology is explained that is helpful in understanding

the composition of articulated bodies - entities that have moveable parts, like the arm of a

human.
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1. Robotics Terminology

a.  Degrees of Freedom (DOF)

The degrees of freedom are the number of independent position variables

necessary to specify the location of all parts of an articulated entity. [WATT92]

b.  Joint

A joint can be one of two types: revolute or prismatic. Revolute joints exhibit

rotary motion about a joint axis. A prismatic or sliding joint exhibits linear motion along

an axis. In this research, all joints in the arm model are rotary joints. Joints are the points of

dynamic motion of an articulated body. [SCHI90]

c.  Link

 A link is a rigid body which connects joints, a critical component in modeling

articulated rigid bodies. The arm is modeled as a series of links joined by revolute joints.

elbow (1)elbow (1)

wrist (3) wrist (3)

shoulder (3) shoulder (3)

Figure  3:  Upper Body Joints with Respective DOFs
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Every adjacent pair of links is joined by a revolute joint and there exists a link between

successive joints [SCHI90]. Links may have zero length when modeling humans with

multiple DOF joints [CRAI89].

d.  Position

Position is given in x, y and z dimensions for any point in 3D space describing

its location with a 3 x 1 position vector. X, Y and Z location is measured relative to a

predetermined reference coordinate space. These quantities are linear measurements along

the three respective axes. [CRAI89]

e.  Orientation

Orientation is given as the angular rotation about the respective axes, known as

azimuth (yaw), elevation (pitch) and roll, describing any point in 3D space with the

symbols , , and , as seen in Figure 4. Movement about axes is described with a 3x3

rotation matrix (R) for a point in space. In this case, every link has a coordinate system from

which the link references its position. [FU87]

f.  World Coordinate System

Theworld coordinate system is an established frame of reference or base frame

from which position and orientation can be measured. There are many frames of reference

that can be chosen for a body. [CRAI89]

Ψ Θ Φ

   Elevation

Azimuth

North

East

Down

Figure  4:  Description of Orientation

 Roll
Φ

Ψ

Θ
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2. Kinematics Terminology

a.  Index-Free Parameters and Coordinate Systems

In robotics literature there is some inconsistency and confusion as to the

terminology, definitions, and labeling that exist for kinematic parameters and coordinate

systems. These notions can be described in general terms without discussing one particular

indexing convention, for instance Denavit-Hartenberg (DH) or Modified Denavit-

Hartenberg (MDH) notation, to be discussed later. In order to develop a better

understanding of kinematic terminology, definitions will be given without regard to indices

of links or joints.

(1)   Definitions

An axis is a line in space. Anoriented axis has a designated positive sense.

A coordinate axis is an oriented axis with a specified origin. Alink is a rigid body with two

holes drilled in it (they may intersect, but they are distinct). The lines through the center of

these holes are calledmotion axes. Each link must have aname. This may be (but need not

be) simply a numerical index starting at the base and proceeding outward. The first

moveable link could be called Link1. The last link in the arm chain could be LinkN.

Likewise, every joint has a scientific name and a common (anatomical) name to denote the

same thing, but possibly with sign reversal and sometimes with a different definition of

zero angle.

Generally, each link has an inboard motion axis and anoutboard motion

axis. The inboard axis is the one closest to the base when the links are assembled in an open

serial chain. When in a chain, a link can berotated and/ortranslated about its inboard

motion axis. The unique shortest distance between the motion axes of a given link lies

along thecommon normal axis. If motion axes intersect, the common normal axis passes

through the intersection and is perpendicular to the plane defined by motion axes. On the

other hand, if the motion axes are parallel, common normal axis is not unique. It must

therefore be defined as aspecific common normal axis.
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     There are peculiarities with the base link (first link) and the last link in a

chain of links. They each have only one hole drilled in them and must be treated differently

than any other link. The base link must have abase coordinate system assigned to it. On the

other hand, in certain notation conventions, the last link could have a second motion axis,

or anapproach axis artificially introduced. [SCHI90]

(2)   Parameters

The above definitions allow naming and identification of all links, joints and

axes in a serial chain linkage mechanism. Additionally, each link of an articulated body has

four parameters associated with it. However, the signs of each of these parameters

associated with a link are ambiguous. To resolve this, a positive sense must be associated

with each link common normal axis and with each joint axis. There are no generally agreed

upon rules for assigning this sense. However, once a sense has been assigned to each joint

axis and each common normal axis, the parameters can be uniquely defined.

The four parameters of a link can be categorized into two groups:joint

parameters andlink parameters. First, every joint in a serial chain connects its inboard link

to its outboard link through a common motion axis which joins the links. The two joint

parameters arejoint displacement, d, and thejoint angle, . The angle  is the (signed)

angle measured from the inboard common normal axis to the outboard common normal axis

about the joint axis. Likewise,d is the (signed) distance measured along the joint axis, from

the inboard common normal axis to the outboard common normal axis.

The two link parameters arelink length, a, and thetwist angle, , and can

be determined by the relative position and orientation of the inboard and outboard axes of

the link. Each link has a value fora, which is the (signed) distance along its oriented

common normal axis from the inboard motion axis to the outboard motion axis. Each link

also has a twist angle, , which is the (signed) angle from its oriented inboard motion axis

to its outboard motion axis, measured in a right-handed screw sense about the link common

normal axis. The right-hand rule (RHR) is a common method of figuring proper orientation

Θ Θ

α

α
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of coordinate system axes. In employing this rule, the thumb of the right hand is oriented

along the positive sense of a given rotation axis. Curling the fingers then indicates the

positive sense of rotation.

Notice that the above parameter definitions uniquely specify all parameters

for all links in an open chain mechanism after a positive sense has been assigned to all link

axes. Note also that, at this level of abstraction, it is not possible to perform any

computations regarding the position in space of any point attached to any link. This is

because no coordinate system has been defined for any link. While this will be discussed

later, it is important to recognize that the link parameter table can be completely filled out

for all links, except the base link and the last link discussed earlier, without defining any

link coordinate systems. Recall that link coordinate systems require that an origin be

specified.

b.   Forward Kinematics (FK)

Forward Kinematics is very basic to the study of mechanical manipulation

[CRAI89]. It is the formulation of the relationship between the joint variables and the

position and the orientation of the tool or “end effector” [SCHI90]. This study of motion

ignores all underlying forces that cause it.   In FK, the movement of each joint is specified

explicitly by the animator, as indicated in Figure 5. The motion of the end effector is

determined indirectly by the accumulation of all transformations down the entire series of

links that leads to that end effector. [WATT92]

c.  Inverse Kinematics (IK)

A more difficult problem than FK is IK. Its complexity lies in the fact that there

is no system comparable to the existing systematic robotics algorithms for FK (to be

discussed in the next section) and that each solution for solving this type of motion is

unique. In particular, human motion applications that accommodate dynamic motion

simulation are beginning to rely on using feedback from external sensors. Sensors can

supply information about link location and orientation. From this information, it is



19

necessary to determine appropriate values for the joint variables to properly articulate the

body part. So, the IK problem presents itself as follows: Given a desired position P and

orientation R for the end effector of a body part, find the values for the joint variables q

which satisfy the transformation matrix (see Figure 5) [SCHI90]. Inverse kinematics is also

known as “goal-directed motion” [WATT92]. In otherwords, IK is when the animator

defines the position of the end effector, like the hand of an arm, only. IK determines the

position and the orientation of all joints in the link hierarchy that lead to the hand. Because

IK becomes computationally more expensive as the complexity of the articulation

increases, and is very difficult to use when specifying a particular animation, IK has only

been useful in a limited subset of computer animation applications. Human motion

simulation is one area that is appropriate for IK because leg and arm motion drives the

animation part of the hierarchy. Trying to animate humans by FK is counterintuitive and

tedious, thus ensuring IK a place in future computer animation. [WATT92]

Link parameters

Position and
orientation of the
end-effector

Joint angles

q1(t)......qn(t)

Joint angles

q1(t)......qn(t)

Direct
Kinematics

  Link parameters

Inverse
Kinematics

Figure  5:  The Forward and Inverse Kinematics Problem [FU87]
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3. Methods Available

a.  Peabody

The Peabody model is a representation of articulated figures which was

developed at the Center of Human Modeling and Simulation, University of Pennsylvania

[BADL93a]. It is the notation used in the Jack software discussed earlier. Peabody is

composed of segments, rather than links, which are connected by multiple DOF joints. It is

a data structure which maintains geometric information about segment dimensions and

joint angles, and efficiently computes, stores and accesses various kinds of geometric

information. Specifically, Peabody maps segment dimensions and joint angles into global

coordinates for the end effectors. Peabody was developed to achieve four objectives:

• to be general purpose

• to be a well-developed notation of articulation

• to represent tree-structured objects in a hierarchy

• to be simple to use.

 For these reasons, Peabody is used in theJack software instead of standard

existing robotics notations which do not possess inherent tree-structured representations,

and are not as flexible [BADL93a]. However, Peabody is specific toJack software, not a

universal notation like the next two notations to be discussed.

b.  Denavit-Hartenberg Notation (DH)

DH notation is the most common kinematics representation in robotics for

systematically assigning right-handed orthonormal coordinate systems or frames, one to

each link in an open kinematic chain of links [SCHI90]. This notation derives a set of the

four kinematic parameters introduced earlier, which describes a link based on

measurements between the coordinate frames (axes) of an articulated body [BADL93a]. In

this system of notation, the base joint in the articulated system is named Joint0 and the link

attached to it is named Link1, thus producing a numbering system in which the link and the

link’s outboard joint both have the same index values. The most important principle in DH

notation is that the link origin for the coordinate system is on theoutboardmotion axis.
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Additionally, a transformation matrix (or A-matrix) exists specifically for the DH

notation. For a more thorough explanation of this system, see [DAVI93].

c.  Modified Denavit-Hartenberg Notation (MDH)

MDH notation utilizes the same system as DH notation, except for one

significant difference. The link origin in MDH is on theinboard motion axis (seen in

Figure 6). In this method, the base joint and the first link, or the base joint’s outboard link,

have the same index value, JointN and LinkN. This is the notation that has been utilized

in this research and that is covered by John Craig and Sandra Davidson in their respective

works [CRAI89][DAVI93]. Below (Equation 3.1) is the transformational matrix (or T-

matrix) for the MDH method for assigning right-handed orthonormal coordinate systems

for each link in the articulated structure. The appearance of the index i-1 in the matrix

reflects the fact that motion for any joint, from the inboard link coordinate system to the

outboard link coordinate system involves first a translation of ai-1 followed by a rotation

of i-1, both of which are fixed numbers.i and/or di are the parameters which describe

the motion of link i.

Figure  6:  Indexed MDH Kinematic Parameters [CRAI89]

Joint i

Link i

zidi

yi-1

Θi

Link i-1

Link i

ai

zi

Joint i

Joint i+1
zi +1

yi + 1

xi

xi

Oi

Oi

α– i

zi-1

xi-1
Oi-1

α Θ



22

C.  HUMAN ARM PROTOTYPE

1. Jack Arm Kinematics

The prototype of the human and its associated arm kinematics were coded in

Common Lisp Object System (CLOS). For some problems CLOS is considered to be an

exploratory language--one which is effective for prototyping solutions for complex

software design problems for ultimate implementation in another language. There are three

particularly beneficial features of CLOS for prototyping:

• It is a weakly typed language, meaning that decisions about how variables will be
used can be delayed until code is actually used.

• Memory management is automatically handled.

• It is normally interpreted. Can be compiled after debugging.

On the other hand, CLOS is not a good language for computationally demanding

real-time applications. So, in light of our research objectives, once an adequate prototype

is developed in CLOS, it must be translated into a language that exhibits greater run-time

efficiency. C++ is such a language. The arm was constructed strictly adhering to object

oriented programming style which both CLOS and C++ support. Code translation from the

prototype in CLOS to the target application, NPSNET in C++, is straightforward based on

object oriented programming.

The prototyped human in this research has only one arm, the right arm; however,

the two human arms are identical articulated bodies except for their angle off of the body’s

forward axis. In order to simplify the arm parameters of the first link, an imaginary link was

Θicos Θisin– 0 ai 1–
Θsin i αi 1–( )cos Θi αi 1–( )coscos αi 1–( )sin– αi 1–( )sin di–

Θi αi 1–( )sinsin Θicos αi 1–( )sin αi 1–( )cos αi 1–( ) dicos

0 0 0 1

(Eq 3.1)i-1 T i =
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constructed from the human’s right clavicle joint to the point where the arm joins the body.

This makes the body’s stationary clavicle the base joint.

a.  Jack Arm Parameters

The kinematic parameters for Jack’s right arm can be determined if the

coordinate systems are known. Figure 7 shows the coordinate systems for all seven DOF

plus the imaginary arm link for the right arm of Jack, the way it will be modeled in graphics.

It should be noted that Figure 3 reflects the actual/physical makeup of the human arm,

indicating three DOF in the shoulder, one in the elbow, and three in the wrist. However,

when modeling the arm in robotics and in graphics, a design decision was made to reflect

the motion of shoulder roll at the elbow. This is because the visual, actual manifestation of

Figure  7:  Right Arm Coordinate Systems for Each Link

Side View of Right ArmFront View of Right Arm
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that motion is not evident in the upper arm, but is in the lower arm and hand. The

artificiality that exists in the robotics and graphics environment is the lack of muscular

tissue on the skeletal frame which causes computer modeling to deviate from reality. As

seen in Figure 7, the computer model reflects the shoulder with two DOF, plus the

imaginary link, and the elbow with two DOF. The wrist remains unaffected. In this model,

the last link does possess an approach axis, x7. Normally, the approach axis is a z-axis that

is aligned with the end effector’s roll axis and points away from the wrist [SCHI90]. Here,

the last link is not the roll axis, so the approach axis does not conform to the normal

approach axis convention.

To establish the coordinate systems in Figure 7, these basic rules were used:

1. Establish the motion axes (z-axis) for each DOF desired in the arm at each joint

location. This axis is the oriented line about which a segment moves to produce the

desired motion, i.e. azimuth, elevation or roll.

2. Once all the z-axes are established, perform a cross-product of zinboardto zoutboard for

each z-axis in the entire arm chain. This can physically be performed by the RHR,

described earlier. The thumb produces the xinboard axis for the inboard coordinate

frame.

3. Although not pictured in Figure 7, it is straightforward to determine the y-axis for

each of the coordinate frames by performing the cross-product of z-axis to x-axis of

the same coordinate system by the RHR. The y-axis is generally needed to draw a

representation of a given limb segment. The general rules, given two of the three axes

of a coordinate frame, are to perform the RHR to determine the third axis follow:

• from oriented z-axis to oriented x-axis to get the oriented y-axis

• from oriented x-axis to oriented y-axis to get the oriented z-axis

• from oriented y-axis to oriented z-axis to get the oriented x-axis.

The notation used to denote an oriented axis pointing straight out of the page is

an encircled black dot, signifying the point of an arrow. The encircled X, denotes an

oriented axis pointing straight into the page, signifying the tail of an arrow. Using the
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index-free definitions of the four kinematic parameters explained earlier in section B.2.a of

this chapter, and the following MDH index conventions for the parameter values for Jack’s

right arm, the parameter values can be determined (as shown in Figure 8).

Figure  8:  MDH Parameters for Right Arm

index
#

link name

inboard
 link

length

(ai-1)

inboard
 twist
angle

( i-1)

inboard
joint offset

(di)

inboard
joint angle

( i)

inboard
axis

name

    0  clavicle         0      0         0         0  body

    1 outer shoul-
der gimbal
ring

        0       0         0         0  azimuth

    2 middle
shoulder
gimbal ring

        0       90         0       -90 elevation

    3 upper arm
(inner
shoulder
gimbal ring)

        0       90     -2.0cm       -90     roll

    4 inner fore-
arm

        0      90          0        180  elbow

    5 outer fore-
arm

        0      90     -2.0 cm        90    roll

    6 middle
wrist gim-
bal ring

        0      90         0       -90  azimuth

     7 hand (inner
wrist gim-
bal ring)

       0     90         0         0 elevation

α Θ

(Inboard joint angles are for the position shown in Figure 7)
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• Inboard Link Length (a i-1) is the length or distance between Zi-1 and Zi measured
along Xi-1, otherwise referred to as the length of the common normal.

• Inboard Twist Angle( i-1) is the angle from Zi-1 to Zi measured about Xi-1,
otherwise referred to as the angle about the common normal.

• Joint Displacement (di) is the length from Xi-1 to Xi along Zi, otherwise referred
to as the distance between common normals.

• Joint Angle( i) is the angle from Xi-1 to Xi about Zi, or the angle of rotation.

Here, again, it is evident that this particular robotics representation of an arm

does not follow natural human intuition in representing an arm. It is peculiar to have a

parameter called “link length”, in Figure 8, equal to zero. It seems natural to think of the

upper arm, forearm, and hand as links of an arm, and these should have lengths that are non-

zero. However, this is not how this arm is represented. The joint offset is the parameter

which allows for the physical arm representation. This point can cause considerable

confusion for beginners in this research field.

b.  Transformation Matrices

The transformation matrices, or T-matrices, for Jack are constructed using the

link parameters listed in Figure 8 and the MDH transformation matrix template in Equation

3.1. The computed link T-matrices are included in this discussion as Equations 3.2-3.8. In

order to move the human arm which is made up of rotary links, the value for , or joint

angle, is the parameter which changes to move a particular DOF. Furthermore, the other

three parameters, a, , and d are constants. Each row of parameters is assigned to one

specific index, identified in the first column of the row, and substituted into Equation 3.1

to get the T-matrices in Equations 3.2-3.8. Note that because many of the complex matrix

terms are eliminated before beginning the calculations, the outcome is more manageable T-

matrices.

α

Θ

Θ

α
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Θ1cos Θ1sin– 0 0

Θ1sin Θ1cos 0 0

0 0 1 0

0 0 0 1

(Eq 3.2)0T1 =

1T2 = (Eq 3.3)

Θ2cos Θ2sin– 0 0

0 0 1– 0

Θ2sin Θ2cos 0 0

0 0 0 1

2T3 = (Eq 3.4)

Θ3cos Θ3sin– 0 0

0 0 1– 2.0

Θ3sin Θ3cos 0 0

0 0 0 1

Θ4cos Θ4sin– 0 0

0 0 1– 0

Θ4sin Θ4cos 0 0

0 0 0 1

(Eq 3.5)3T4 =

Θ5cos Θ5sin– 0 0

0 0 1– 2.0

Θ5sin Θ5cos 0 0

0 0 0 1

(Eq 3.6)4T5 =

Θ6cos Θ6sin– 0 0

0 0 1– 0

Θ6sin Θ6cos 0 0

0 0 0 1

(Eq 3.7)
5T6 =

6T7 =

Θ7cos Θ7sin– 0 0

0 0 1– 0

Θ7sin Θ7cos 0 0

0 0 0 1

(Eq 3.8)
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2. Jack Arm Forward Kinematics

 Forward kinematics manipulation of the links of the upper arm will result in the

end effector being positioned by applying desired joint angles to the links in the chain.

Equations 3.9-3.11 illustrate the mathematical formulas involved in locating the end

effector. The result of the theoretic equation manipulation is the homogeneous

transformation matrix (H-matrix) of the ending link, which in the case of the upper arm, is

Link2, seen in Equation 3.12. An H-matrix is a 4 x 4 matrix which is used to capture the

rotation and translation (orientation and position) of the general transform into a single

matrix [CRAI89]. Orientation, alone, can be represented in a rotation matrix or (R-matrix).

A real-world example of an H-matrix is found in Equation 3.13 after moves of joint angles

1 = 0.1 radians and 2 = 0.5 radians were executed for Link1 and Link2 respectively.

H1 = HBody(
0T1) (Eq 3.9)

H2 = (H1)(
1T2) (Eq 3.10)

H2 = (HBody)(
0T1)(

1T2) (Eq 3.11)

 HBody is a 4 x 4 identity matrix and (0T1) and(1T2) are defined in Equations 3.2 and

3.3. The product of the two T-matrices0T1 and 1T2 will be referred to henceforth as

Tupperarm:

Θ Θ

(Eq 3.12)

Θ1 Θ2coscos Θ2 Θ1cossin– Θ1sin 0

Θsin 1 Θ2cos Θ2 Θ1sinsin– Θ1cos– 0

Θ2sin Θ2cos 0 0

0 0 0 1

H2=

0.477 0.873 0.099 0

0.048 0.088 0.995– 0

0.878– 0.479 0 0

0 0 0 1

H2= (Eq 3.13)
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3. Jack Arm Inverse Kinematics

Inverse kinematics refers to the process of starting with a known position and

orientation of the end effector and computing backwards the joint angles for the links which

affect the end effector’s position and orientation. Imagine if the sensor on the upper arm,

measuring the shoulder orientation, produced the H-matrix in Equation 3.13. In the CLOS

simulation, a sensor class, called Polhemus class, was written in order to model the IK as

it would happen with real sensors attached to the arm. The code takes the last H-matrix

generated by the forward kinematics manipulation, in this case H2, and provides it to the

appropriate sensor of the Polhemus class, as if it were directly sensed information. IK

requires software to work backwards, doing the multiplication on the right side of Equation

3.14, to derive the Tupperarm matrix. In this case, Tupperarmmatrix is the same matrix as H2

because the inverse of HBody is an identity matrix. From Tupperarm the joint angles, 1 and

2 can be solved through a series of non-linear simultaneous equations, seen in Equations

3.16 -3.17, referring to the matrix values in the reference positions noted in Equation 3.15.

Tupperarm = HBody
-1 H2 (Eq 3.14)

The positions in the T- matrix will be referred to with the following designators:

Comparing Equation 3.15 with Equation 3.12 and through the use of a four quadrant

atan function, evidently

1 = (atan c1 (- c2)) (Eq 3.16)

2 = (atan a3 b3) (Eq 3.17)

Θ

Θ

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4

(Eq 3.15)

Θ

Θ
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Generally speaking, non-linear simultaneous equations return the actual joint

angles for each consecutive link in the body being articulated. In this example, the upper

arm is moving and it is modeled with two segments. Assuming perfectly aligned coordinate

systems between the sensor and the link, the exercise above simulates what would happen

in code when the sensor returned a matrix like the one found in Equation 3.13. The joint

angles solved from the non-linear simultaneous equations will correctly articulate the

intermediate joints for the end effector to be in its goal state. The joint angles that result

from this inverse kinematic algorithm will be relative to the original joint angles specified

for that link in Figure 8. For instance, Equation 3.18 illustrates that the initial joint angle

(in degrees) for Link 2  is -90, convert degrees to radians, and add the desired movement

for that link in radians and the result  is the new desired joint angle.

2 = -90 = -1.5707 radians + 0.5 radians = -1.0707 radians= new2 (Eq 3.18)

Therefore, all computed joint angles are measured from the originally specified

joint angle parameters.  The rest of the arm’s IK can be derived similarly to the example

just shown.

4. Summary

The human arm prototype in CLOS provides an excellent example of code reuse

and object oriented programming. Many of the classes and objects used in this simulation

are similar to those used in the Aquarobot example developed by Sandra Davidson in her

thesis [DAVI93]. The major difference between the prototype of the aquarobot and the

human arm is that the aquarobot’s legs are constructed with single DOF joints, whereas the

arm has joints which have multiple DOFs. This is a challenging problem, particularly from

the robotics perspective, because the task when modeling human limbs is to accurately

model the mobility allowed by human ball-and-socket joints in graphical representations.

The notion of DOFs being represented by links and some of these links having zero length

Θ Θ
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can be hard to comprehend. However, after grappling with this representation technique,

design decisions were made on how the arm would be modeled. Through the reuse/

adaptation of some of the classes in Davidson’s thesis and standard robotics articulation

methods, a human arm can be accurately represented, as seen in Figure 9. The CLOS

representation of the human on the screen is done through the use of node lists and polygon

lists. Node lists are lists of the node coordinates (X, Y, Z, 1) which are connected by the

polygon lists to produce the desired graphical representation. Recall the arm coordinate

systems (Figure 7) are structured such that the y-axis or z-axis is the axis which is rendered

on the screen through node lists. This result is based on coordinate system design decisions.

There is more than one way which these can be chosen.   Figure 10 represents the class and

object hierarchies of the structure of the code which was written for the human arm motion

prototype and is contained in Appendix A. The hierarchy of the arm was modified from that

of the Aquarobot leg, adding an additional layer of abstraction in order to more realistically

add simulated sensor functionality with polhemus class, in the prototype.

Figure  9:  Prototype CLOS Human
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Figure  10:  CLOS Class and Object Hierarchy
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Now that classes have been developed and testing has been conducted by

articulating the human right arm (Appendix B), it is appropriate, at this stage, to develop

this functionality in a language that not only accommodates object oriented programming

principles, like CLOS, but that can perform articulations of a human arm more rapidly.

Because of the anticipated use of this code within a particular networked virtual

environment which is written in C++, it is essential that it be translated into C++. The goal

here is to adhere as closely to the already constructed CLOS classes and object hierarchy

as possible and still be eventually implemented into a networked virtual environment.
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IV.  C++ PROTOTYPING TOOLS

A.  MOTIVATION

Through the development of kinematic algorithms and a model of the upper arm in

CLOS, an articulated human arm was constructed. As discussed in Chapter III, an

exploratory programming language like CLOS is not the best choice for computationally

intensive applications. In order to incorporate this developmental code into an extensible,

“next-generation” prototyping tool, there are three basic requirements. First, it is desirable

to implement this, initially, into an environment which is non-networked. This is useful to

minimize additional complexity and overhead of a fully networked VR system. Second,

since the prototype was written in an object oriented style, it is very beneficial for the real-

time computer language to also be adaptable to an object oriented style. Last, the

environment must utilize the same computer language as the foreseen target application.

 To meet these needs, two versions of a prototyping tool were developed, enabling

manipulation of a human model’s upper body in a C++, object-oriented language

environment that is stand-alone and easily extensible to a networked virtual environment

application. The first tool developed was an SGI Performer application with a graphical

user interface (GUI) which enables manipulation of the human model in order to determine

joint construction and coordinate frame orientations. The GUI is particularly desirable

when scripting arm movements by forward kinematic methods. Later, a non-GUI version

of the tool was developed to aid in the study of the inverse kinematics problem using

magnetic sensors attached to the user’s arms. Both tools facilitate the development of user

interfaces to control the human model.
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B.  DESCRIPTION

1.  Overview

The human model to be manipulated is from University of Pennsylvania, Center

for Human Modeling and Simulation,Jack software. It is an entity currently used in a

networked real-time VE known as NPSNET. This networked VE has been developed and

maintained by the staff, faculty, and students at the Naval Postgraduate School in

Monterey, CA. The VE currently has the capability of sustaining up to 100 battlefield

entities such as helicopters, tanks, airplanes, and most recently, humans

[BARH94][PRAT95]. Human motion is controlled by the JackML which provides various

postures; however, the upper body largely remains static. Because this networked VE

demands dynamic humans who interact with their world, it was suggested that new hand

and upper body motion be scripted so that the humans could appear to behave more

realistically. But, each time a change was made in the code for upper body motion, the

expansive networked virtual environment would have to be exited and recompiled which

could take several minutes each time. To do this more rapidly, we found it beneficial to

incorporate the required JackML software from the networked application into a stand-

alone framework to isolate the development of scripted motion for this networked

application.

The code involving a human model was then incorporated into a GUI program

which requires much less time to debug and test. This aided in the development of scripted

hand and arm signals which were ultimately implemented in the networked application by

issuing keyboard commands. As discussed before, this scripted method utilizes the

principles of FK and keyboard input which is less intuitive for the user to control. Relative

to a generally static human upper body, however, it is an improvement to have user control

of the upper body at all. The ultimate goal is to incorporate more dynamic, real-time upper

body movement by tracking the user through the use of body-mounted sensors.
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2.  Design and Implementation

The original prototyping tool is a GUI which required careful design

considerations in order to merge two stand-alone applications, Motif and SGI Performer,

into one system. The successful integration of the two resulted in an easy-to-manipulate

interface which allows basic upper body motion to be developed and performed for the

human model, while otherwise keeping the human static in the environment. The scripts for

hand and arm signals are coded in the tool software and can be demonstrated through the

use of window menu selections. A series of official military hand and arm signals (see

Table 2) can be performed upon request [MCIO15]. The second version of the prototyping

tool was generated from this GUI to accommodate the use of magnetic sensors and inverse

kinematic algorithms. The interface for dynamic human upper body, in this tool version,

comes from actual user-directed movement rather than GUI buttons which activate pre-

designed, scripted menu-driven upper body movement.

a.  Motif Interface

The development of the GUI tool occurred in two basic stages: the development

of the windows and menus, and then inclusion of Performer 3D graphics.   A Motif window

design tool, BX Builder Toolkit, was used to create the layouts of windows, labels, button

UNIT SIZE FORMATION SPACING MOVEMENT

Platoon Line Close Up Forward

Squad Wedge Open Up Halt

Fire team Vee Disperse Get Down

Column Faster

Echelon Right Slower

Echelon Left Move Right

Move Left

Table 2: Tactical Military Hand and Arm Signals
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types, and locations and types of windows, as seen in Figure 11. It permits easy placement

of widgets and creation/editing of callbacks. The GUI menu options (some of  which are

seen in Figure 12) are the mechanism by which the user can request demonstration of the

various hand and arm signals. Once basic design and functionality of the windows and

menus were achieved, three windows, two 2-dimensional (2D) graphics and one 3-

Figure 11:   GUI Prototyping Tool Window

Figure 12:   GUI Prototyping Tool Menus
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dimensional (3D) Performer window, were incorporated into the GUI. The most significant

window in this tool is the 3D graphics window which utilizes Performer and renders the

human model executing the hand and arm signals.

b.  Performer

In the 3D Performer window, seen in Figure 13, the human’s body position is

static and is oriented in the middle of the view directly facing the user. The scene is the

basic Performer environment scene with ground and sky models. Note that in order to

successfully run Performer within the Motif GUI, it is required to specify a single threaded

execution mode for Performer. When the GUI application is launched, a function call is

made after all the necessary GUI parts have been created to setup Performer. This function

does all the standard Performer initializations and setup as well as specific application

initializations for the human model. When the GUI is launched, the 3D Performer graphics

window appears and is refreshed continuously until the GUI Exit button is pushed.

Figure 13: JackHuman Model in the Performer Window
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3. Jack Motion Library (JackML)

a.  Overview

JackML is a real-time module of University of Pennsylvania’sJack software that

controls smooth motion of the human model. It includes over-sampled, scripted animations

for various static and dynamic postures and posture transitions (see Table 3). Leg

locomotion, although not of interest in this research, is also handled by this motion library.

The library has limited scripted animations which can be played back. Until this research

work, the extent of upper body motion was limited to the deployment or non-deployment

of the weapon that the human model holds. An important ability with respect to this thesis

is being able to override joint angles in real-time, particularly to increase the human’s upper

body motion capability, interactively. [PRAT95]

STATIC POSTURES
DYNAMIC
POSTURES

Standing Upright
 Weapon Deployed

Walking

Standing Upright
 Weapon Not Deployed

Running

Kneeling
Weapon Deployed

Crawling

Kneeling
Weapon Not Deployed

Prone
Weapon Deployed

Prone
Weapon Not Deployed

Dead

Table 3: JackML Scripted Animations
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b.  Overriding Joint Angles

 The GUI tool can execute programmer scripted motion for the arms by using

JackML’s vital capability of overriding, in real-time, the default angles normally provided

for the human model by JackML. Similarly, the non-GUI tool can dynamically, and in real-

time, override motion library joint angles to allow the user to manipulate the model through

input from arm-mounted magnetic sensors. Here, instead of programmer-defined joint

angles overriding the motion library angles, as demonstrated by the hand and arm signals,

joint angles are overridden by user-driven joint angles which are fed into the application

through sensor information.

4. Forward Kinematics

As discussed in Chapter III, forward kinematics can be used by the programmer

to create more dynamic movement for the computer human, but it is not completely

intuitive. For example, the programmer knows the goal position, but very rarely must

consider at what angles he will have to move his joints in order to achieve that particular

goal position. The GUI tool is very helpful when developing specific scripted arm motions

quickly. The joint angles for each DOF in a particular arm segment are directly specified,

overriding joint angles in JackML, to produce a desired motion. This GUI tool is able to be

tested and debugged quickly and allows for swift development of accurate upper body

motions. Upon selecting a hand and arm signal to execute from the menu and pressing the

Execute button, the scripted motion is replayed. Figure 14 is a snapshot of a frame from a

scripted hand signal, echelon right formation, in the GUI prototyping tool.

5. Inverse Kinematics

The non-GUI tool version was adapted and improved by Scott McMillan from the GUI

tool.  The tool  no longer allows user interaction with the human model through the use of

menu buttons. Instead, the user interfaces through magnetic sensors placed on the user’s

body. In order to allow accurate tracking of a user’s upper body in real-time, the Polhemus

3Space Fastrak sensor system is used [POLH93]. Each sensor returns six DOFs: the
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position (X, Y and Z) and orientation (H, P and R) of that part of the body on which the

sensor is mounted. The small body sensor receivers in conjunction with the “Long Ranger”,

a ceiling-mounted transmitter with a range of 15 feet, provides information to drive human

upper body motion. The update rates of this sensor system divides its maximum update

capability of 60 updates per second (60 updates/sec) between the number of senors used. If

one sensor is used it will update at 60 updates/sec. Otherwise, 60 updates/sec will be

divided amongst the number of sensors used. Table 4 shows parameters involved in

Joint
Arm

Segment
Joint
DOF

Cumulative
DOF

Number of
Sensors for
Complete

Specification

Number of
Sensors for

Full
Specification

Shoulder Upper Arm 3 3 1 1

Elbow Forearm 1 4 1 2

Wrist Hand 3 7 2 3

TABLE 4. Joint degrees of freedom and sensor requirements

Figure 14:   Jack Hand Signal Demonstration
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articulating a seven DOF per arm: three in the shoulder, one in the elbow, and three in the

wrist. The advantages and disadvantages of the number of sensors to use are as follows:

1. One sensor is not sufficient to uniquely define the seven DOF angles that we need

    with only six DOF sensor data.

2. Two sensors, however, gives us 12 DOF data elements for seven DOF per arm.

     This is adequate, giving us what we refer to as acompletely specified solution1.

3. Three sensors give us 18 DOF data from which 7 DOF can be computed by

     eliminating all position data, simplifying the IK problem. This is referred to as the

fully specified problem2.

 With our real-time requirement, the more sensor information we can get, the less

calculations we have to perform, therefore avoiding time-consuming mathematical

computations. Up to a certain point, more sensor information allows generation of faster

articulations because we can avoid complex inverse kinematic algorithms. Past that point,

too much data can also result in a degradation of speed, which can result when not enough

data is present. With the fully specified solution, we overcome any need for complex

inverse kinematics computation, while disregarding minimal data from sensors. Due to the

anticipated types of motions in our target VE, it is not critical to articulate the two DOF

clavicle for either the left or right arm. Therefore, both clavicles will remain fixed for our

application. In order to try to achieve real-time human upper body articulation, several

Polhemus sensor configurations and associated mathematical solutions were explored.

Ultimately, the fully specified method, discussed above, was chosen because it appeared

simple and able to meet the objectives in a real-time virtual environment.

The C++ software in the non-GUI prototyping tool requires classes which represent

the articulated arm and implements the kinematic functions which will produce angles

which can override the JackML angles to produced desired movement. A complete

1.  For the purpose of this paper, when the joint angles can be uniquely determined, the system is
said to be “completely specified.”
2. A system is “fully specified” when all joint angles are able to be directly measured.
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translation of CLOS code into C++ is not required because of the robust nature of the

JackML and Performer application. The forward kinematics functionality is not required

from the CLOS code because the use of JackML already handles the forward kinematics

for the human model. Additional CLOS functionality that is no longer required is the

rendering of the human body and the body movement functions as well as some of the basic

kinematics mathematical functions. The C++ class hierarchy that was adapted from the

CLOS prototype and used in the non-GUI prototyping tool is shown in Figure 15.

RigidBody

RotaryLink

Link0 Link5 Link6 Link7Link3 Link4Link1 Link2

HumanArm

FastrakClassCameraClass

Figure 15:   C++ Class and Object Hierarchy

=concrete

LEGEND

=abstract

superclass subclass
a-kind of

composite dependent
object object       part-of
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6. Sensor Implementation

The Polhemus3Space Fastrak system is controlled by an external control unit

which is attached to an RS-232 port on the computer. The Fastrak system is only capable

of managing four sensors at one time and all four sensors will be used in this research.

There are particular settings on the face of the control unit which are critical to the correct

functioning of the system. For this research, the four switches must be in the down position

for the sensors to be activated. For more details on the Fastrak system, see the Fastrak

User’s Manual [POLH93]. The VIM HMD Polhemus sensor will sense head motions and

act as the reference location for the human body, while the three arm-mounted sensors are

placed on the upper arm, on the forearm, and on the back of the hand, outboard of the wrist.

The right arm sensor configuration is shown in Figure 16.

Mounting sensors on the body is a particularly important aspect in sensor

tracking. The sensors in this research are mounted on the upper arm and the forearm with

two inch wide elastic webbing which is wrapped around the limb snugly with velcro

attachment strips. As discussed in Chapter II, the performance of magnetic sensors is

degraded by the presence of ferromagnetic material (metals) in the working volume. As a

Figure 16:   Sensor Position on the Arms
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result, it is particularly important that the sensor straps be free of any metal connectors in

order to avoid any possible ferromagnetic interference. The sensors are sewn on to the

elastic bands so that they do not move about on the straps. The hand sensor is mounted on

a neoprene glove, which again has an elastic band on the back of the hand. This glove,

without enclosed fingers, is “one-size-fits-all” allowing for a snug fit for a wide variety of

hand sizes.

Ordering is important when placing the sensors on the right arm.  The sensor that

is attached to sensor station two on the Fastrak control unit must be attached to the upper

arm. The sensor attached to sensor station three is attached to the forearm, and the sensor

attached to sensor station four is worn when donning the right-hand glove. Sensors two and

three should be placed as close as possible to the nearby joints, i.e. shoulder and elbow

respectively, without impeding full mobility of the joints. The sensor mounts are adequate

for positioning the sensors on the proper part of the body and for ensuring that  they do not

drift or move unexpectedly. When attaching the sensors, the glove should be placed on the

right hand first, ensuring that when the forearm sensor is attached that the cord from the

sensor on the hand is bound under the elastic of the forearm sensor. The same mounting

technique applies to the shoulder sensor so that at the shoulder joint, all three cables are

gathered and can comfortably trail down the back of the user without interfering with free

arm motion.

C.  Results and Conclusions

The four major research objectives which contributed to the development of the

prototyping tools described in this chapter are real-time interaction, realism, efficiency and

simplicity. First is the desire for real-time, interactive human articulation, particularly for

future implementation in a large-scale, networked, interactive virtual environment. The

second objective is realistic human movement  which is driven by the desire is to create a

natural, immersive virtual world in which users will feel comfortable and will participate

for extended periods of time. The third objective is efficiency. We must ensure that
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methods of computation are the most accurate and efficient to produce fast and natural

human motion. Lastly, the fourth research objective is to make the interface simple and

intuitive for both the user and the programmer. The physical interface must be comfortable

and easy to use with minimal constraints on, and rules for, the user of the virtual

environment.   The interface software must be a modular library so that it is adaptable and

extendable to a variety of interfaces and applications.

There are trade-offs in achieving these goals when contending with many

competing objectives. Design decisions are based on the advantages and disadvantages

which result from trying to maximize each of our objectives. The key challenge has been

balancing the trade-offs between the real-time requirements of the virtual environment,

which are critical in a networked environment, while achieving realistic articulated human

movements. Lag, or latency, is the delay between the movement of the remotely sensed

object and the report of the new position. In graphics applications the report of a new

position is manifested as a new frame update. Inherent delays in the tracking system can

interfere with achieving real-time performance in the VE to the extent of causing motion

sickness [MEYE92]. This research uses the most advanced available sensing technology to

produce acceptable real-time results.

Through the use of the two C++ prototyping tools, we are able to manipulate a

human model’s upper body effectively in real-time (see Figures 14 and 17). The

prototyping tools are stand-alone and written in an object oriented, real-time programming

language, in order to be able to prototype rapidly and to produce a robust interface that

would be compatible with potential environments. To meet such challenges, a number of

critical design decisions were made. First, the JackML was used to perform many of the

scripted motions of articulated humans in the application and to provide a framework into

which joint angles from the sensors are inserted to perform more dynamic upper body

motion in real-time. Second, the moveable clavicle was disregarded to eliminate additional

articulations that were not critical to motion in our VE. Third, we utilize three sensors per

arm, which ultimately eliminates some time-consuming computation and allows the use of
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only the orientation (H, P, and R) information. With dependence on orientation

information, the system is more adaptable for a variety of body sizes without prohibitive

calibration routines. The result is an effective human interface to manipulate the upper

body of the human model which may be easily integrated into a large-scale networked

interactive environment.

G

I
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Ranger

Figure 17:   GUI/Non-GUI System Diagram
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V. CONCLUSION

A.   RESULTS

Virtual environments have a critical requirement for dynamic articulation of human

models. This can be accomplished by two primary methods: forward kinematics and

inverse kinematics. Forward kinematics provides the VE user with scripted motion which

can be requested by input to some device in order to have the model perform that

movement. Alternatively, inverse kinematics gives the user the opportunity to intuitively

control the human model’s movement through his own motion. This is done through the

use of magnetic sensors which provide position and orientation information which can be

used to compute the appropriate joint angles for that movement.

The development of human upper body articulation was accomplished in two steps.

First was the creation of a experimental prototype in CLOS. It contained classes which

model the human arm and its components. These were closely derived from the class

structure of Aquarobot in Sandra Davidson’s thesis [DAVI93]. Furthermore, this

experimental prototype was developed into two stand-alone, real-time, SGI Performer-

based prototyping tools. The first was a GUI tool which expedites the creation of scripted

upper body motion for replay by keyboard or mouse input. The other tool was a non-GUI

prototyping tool which facilitates the development of inverse kinematic software through

the use of an interface which tracks body position using sensors. In this case, Polhemus

3Space Fastrak sensors were used. It should be noted that this interface software is

developed without regard for a particular sensor and the interface can be easily modified to

work with other types of sensors which provide orientation information.

 An entire right arm of a human was designed and articulated in CLOS through forward

kinematic methods. This led to the development of the C++ GUI for forward kinematic

scripting of upper body motion. The upper portion of the right arm was created and
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implemented in both CLOS and the non-GUI C++ tool. The class structure for an arm was

inserted into this Performer-based application in order to manipulate the right arm of the

human model through the use of magnetic sensors. By reading sensor matrix information,

movement of links is initiated and can be viewed on the screen. Although this magnetic

sensor system produces six DOF data (three position, three orientation), this interface

prototype design, using three sensors per arm, only requires the use of orientation data,

resulting in easier and less complicated calibration and the ability to disregard limb lengths

of each user. The benefit of these prototype applications is that the code is easily

integratable into a VE which requires dynamic human upper body motion.

B.  LESSONS LEARNED

Three important lessons have been learned in the process of this research project. The

primary lesson is the understanding of strengths and weaknesses of computer programming

languages. This research used two different languages, CLOS (LISP) and C++ in two

distinct phases of this research. CLOS was used in initial prototyping for its benefits when

developing experimental systems. It is easy to debug and can be executed quickly. Both

CLOS and C++ support object oriented programming. This is a particular advantage when

trying to maintain abstraction away from a particular interface for easy adaptation to other

types of tracking interfaces. C++, however, has its advantage of handling computationally

intensive algorithms that need to run in real-time. It is also the language most frequently

used with graphics applications. This lesson is one that was vividly illustrated during the

conduct of this research.

The second is the design of the sensor configuration which uses three sensors per arm

to articulate seven DOFs. It has the distinct advantage of not requiring the use of position

information. With the availability of 18 pieces of sensor data and a requirement for only

seven, all the position information can be disregarded. This eliminates complicated

calibration and measuring requirements of human limbs. The third lesson is the importance

of mounting the sensors to achieve both physical comfort and reliable data. The sensor must
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be fastened as securely as possible to the body in order to achieve accurate motion readings,

while maintaining comfort to the user. Additionally, the magnetic sensor has problems with

ferromagnetic interference, so the mechanism by which the sensors are attached must not

include metal connectors or clips for fastening.

C.  EXTENSIBILITY OF SOFTWARE TO OTHER INTERFACES

The code produced during the research for this thesis is strongly affiliated with object

oriented programming. The classes developed for the arm structure in both CLOS and C++

can be easily implemented with any other interface for human articulation. These classes

are abstracted from any particular interface mechanism, or software, to ensure extensibility

of basic human modeling and kinematic algorithms without regard to the type of tracking

device. For this research, Polhemus3Space Fastrak sensor system is the preferred interface,

but as the interface technology changes, the human arm classes and kinematic algorithms

that were developed in this thesis can be easily adapted to accommodate a variety of other

articulation interfaces. Furthermore, with the configuration of sensors in this research, it is

conceivable that a tracking system which only senses three DOF (orientation data) could

be an excellent alternative to the current tracking technology used in this research.

D.  FUTURE TRACKING ALTERNATIVES

Because magnetic sensors are readily available and affordable, they are currently an

excellent option for a human upper body articulation interface in VEs. A variety of human

tracking interfaces are in the research and development stages, and may in the future be

more efficient, easier to use options, relative to the current magnetic sensor systems. Even

though magnetic tracking technology has some drawbacks, it clearly meets the current

research requirements in terms of capability and price. Alternatives that are being explored

include optical and acoustic sensor systems.
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E.  FUTURE WORK

This research provides the ground work for future upper body articulations in a CLOS

prototyping environment as well as a C++ application. The following is a list of topics for

future work in this research area.

• Instantiate and articulate two entire arms in the non-GUI prototyping tool.

• Test and evaluate the articulations of the upper body of the human model in the
non-GUI protoyping tool.

• Analyze and compare various inverse kinematic methods and sensor
configurations with the ones presented in this thesis.

• Articulate other upper body DOFs that may be useful in the VE.

• Implement interactive human upper body articulation in a large-scale networked
VE, like NPSNET.

• Communicate articulation information over a network efficiently using DIS
protocol and the least bandwidth possible in order to sustain and articulate from
four to upwards of 160 human entities in the world.

F.  SUMMARY

This thesis has explored the development of an interface for VEs which articulates a

virtual human’s upper body possessing seven DOFs per arm with off-the-shelf magnetic

sensors in real-time. At the outset, CLOS was used to prototype kinematic algorithms to

articulate human arms and to establish and test classes and kinematic algorithms in order

to produce modular code (Appendix A) which can be easily extended and reused for other

types of upper body articulation interfaces. This code simulates the sensor functionality

which would be used in the C++ prototyping environment. The polhemus class enables

testing of inverse kinematics functions to ensure that correct joint angles are being

calculated. Appendix B is the script of the results produced from the CLOS inverse

kinematics routine described in Chapter III.

The CLOS code was translated into C++ which enabled straightfoward class reuse in

a real-time GUI prototyping tool, an application based on SGI Performer. With three

Polhemus sensors attached to the arm of a user, the articulations of the human are realistic

and efficient. The advantage with this sensor configuration is that only orientation



53

information is used in the computation, thus alleviating any complicated calibration and

tedious body measurements to ensure accurate motion is achieved. This proof of concept

was developed to begin to evaluate the efficiency and comfort of this sensor tracking

configuration relative to the few that exist currently.

The C++ prototyping tools enabled development of both the scripted, keyboard or

mouse executed movement and the user-directed upper body movement through the use of

sensors attached to the upper body. Although not intuitive, scripts developed through

forward kinematic methods are fast and contribute significant real-time dynamics to a VE

inhabited with humans and other entities. The more interesting and desirable method for

upper body articulations in VEs is through inverse kinematic methods which are driven

through sensor-obtained body information. With the user moving his own body to direct

the motion of his virtual human entity, he is able to more realistically and intuitively drive

the interactions of the human in the world. With the integration of the real-time articulation

software developed in this thesis, networked VEs, like NPSNET, will be more realistic and

of significant practical use for entertainment and training purposes.
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APPENDIX A.  LISP CODE

This appendix contains the LISP (CLOS) code for all results pertaining to the simulated

Human generated in this thesis.

LOAD-FILES.CL

;*************************************************************
;LOAD-FILES.CL loads in all files associated with and necessary for the
;kinematic simulation of the simulated Human as outlined in this thesis.
;*************************************************************

(defun load-jack()

; Abstract class files
  (load “rigid-body.cl”)
  (load “link.cl”)

; Specific Graphics and Display files
  (load “camera.cl”)
  (load “video-camera.cl”)

; Specific robot files
  (load “kinematics.cl”)
  (load “human.cl”)
  (load “human-arm.cl”)
  (load “jack-link.cl”)
  (load “polhemus.cl”)

; Specific demo files
  (load “demo-jack.cl”)
)
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DEMO-JACK.CL

;***********************************************************
;DEMO-JACK.CL contains the code necessary to demonstrate the
;kinematics of the simulated Human arm.
;This code was written by Shirley M. Pratt and modified by the author.
;************************************************************

(defun demo-jack()

; video-camera demo of jack
(jack-video *black*)

(new-picture camera-1 jack-1 0)

(zoom-camera camera-1 10)

(tilt-camera camera-1 -30)

(rotate-camera camera-1 180)
(new-picture camera-1 jack-1 0)

(move-incremental jack-1 ‘((0 0 0 0 0 0) (0.1 0.5)))
(new-picture camera-1 jack-1 0)
(H-to-jack (sensor (link2 (upperarm (rightarm jack-1)))) jack-1)

(move-incremental jack-1 ‘((0 0 0 0 0 0) (0.2 0.6)))
(new-picture camera-1 jack-1 0)
(H-to-jack (sensor (link2 (upperarm (rightarm jack-1)))) jack-1)

(move-incremental jack-1 ‘((0 0 0 0 0 0) (0.3 0.7)))
(new-picture camera-1 jack-1 0)
(H-to-jack (sensor (link2 (upperarm (rightarm jack-1)))) jack-1)

(move-incremental jack-1 ‘((0 0 0 0 0 0) (0.4 0.8)))
(new-picture camera-1 jack-1 0)
(H-to-jack (sensor (link2 (upperarm (rightarm jack-1)))) jack-1)

(move-incremental jack-1 ‘((0 0 0 0 0 0) (0.9 0.9)))
(new-picture camera-1 jack-1 0)
(H-to-jack (sensor (link2 (upperarm (rightarm jack-1)))) jack-1)

(move-incremental jack-1 ‘((0 0 0 0 0 0) (1.5 1.5)))
(new-picture camera-1 jack-1 0)
(H-to-jack (sensor (link2 (upperarm (rightarm jack-1)))) jack-1)

(dotimes (i 30)
(new-picture camera-1 jack-1 0))

;the end of the demonstration
(format t “     Jack is DONE!   ~%~%”)
(reset-windows))
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RIGID-BODY.CL

;*************************************************************
;RIGID-BODY.CL defines the class rigid-body associated with the
;simulated Human kinematic model.
;This code was written by Dr. McGhee and modified by the author.
;*************************************************************

(defclass rigid-body()
  ((location              ;The three-vector (x y z) in world coordinates.
    :initarg :location
    :accessor location)
   (velocity              ;The six-vector (u v w p q r) in body coordinates.
    :initform ‘(1 1 1 .1 .1 .1)
    :initarg :velocity
    :accessor velocity)
   (velocity-growth-rate  ;The vector (u-dot v-dot w-dot p-dot q-dot r-dot).
    :accessor velocity-growth-rate)
   (forces-and-torques    ;The vector (Fx Fy Fz L M N) in body coordinates.
    :initform ‘(0 0 0 0 0 0)
    :accessor forces-and-torques)
   (moments-of-inertia    ;The vector (Ix Iy Iz) in principal axis coordinates.
    :initform ‘(1 1 1)
    :initarg :moments-of-inertia
    :accessor moments-of-inertia)
   (mass
    :initform 1
    :initarg :mass
    :accessor mass)
   (node-list    ;(x y z 1) in body coord for each node. Starts with (0 0 0 1).
    :initarg :node-list
    :accessor node-list)
   (polygon-list
    :initarg :polygon-list
    :accessor polygon-list)
   (transformed-node-list ;(x y z 1) in earth coord for each node in node-list.
    :accessor transformed-node-list)
   (H-matrix
    :initform (unit-matrix 4)
    :accessor H-matrix)
   (current-time
    :accessor current-time)))

(defmethod move-incremental ((body rigid-body) increment-list)
  (setf (H-matrix body)
    (matrix-multiply (H-matrix body)
                     (homogeneous-transform
                       (first increment-list)      ;body z rotation
                       (second increment-list)     ;body y rotation
                       (third increment-list)      ;body x rotation
                       (fourth increment-list)     ;body x translation
                       (fifth increment-list)      ;body y translation
                       (sixth increment-list))))   ;body z translation
  (transform-node-list body)
  (update-position body))
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(defmethod transform-node-list ((body rigid-body))
   (setf (transformed-node-list body)
   (mapcar #’(lambda (node-location)
             (post-multiply (H-matrix body) node-location))
             (node-list body)))
   (format t “transformed node list for link ~d is ~a ~% “
              body (transformed-node-list body)))

(defmethod update-position ((body rigid-body))
  (setf (location body) (firstn 3 (first (transformed-node-list body)))))
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HUMAN.CL

;************************************************************
;HUMAN.CL defines the classes static-human and human associated
;with the simulated Human kinematic model.
;This code was adapted by the author from Aqua.cl which was originally
;written by Dr. McGhee.
;*************************************************************

(defclass static-human (rigid-body)
   ((node-list
   :initform ‘((0 -1 2.75 1) (-1 -3 -1.25 1) (-1 1 -1.25 1) (-1 1 2.75 1)
             (-1 -3 2.75 1) (2 -3 2.75 1) (2 1 2.75 1) (-1 -3 5.75 1)
             (2 -3 5.75 1) (2 1 5.75 1)
             (-1 1 5.75 1) (0 -1 -3.25 1) (0 0 -2.25 1) (0 -1 -1.25 1)
             (0 -2 -2.25 1) (3 0 2.75 1)
             (3 -2 2.75 1) (3 0 5.75 1) (3 -2 5.75 1) (0 -1 0 1) (0 0 0 1)))
   (polygon-list
   :initform ‘((1 2 3 4) (3 4 5 6) (4 7) (5 8) (6 9) (3 10) (11 12 13 14)
              (13 0)(0 15) (0 16) (16 18) (15 17) (19 20)))
   (H-matrix
   :initform (homogeneous-transform 0 0 0 0 0 0))))

(defclass human ()
    ((body
     :initform (make-instance ‘static-human)
     :accessor body)
    (rightarm
     :initform (make-instance ‘human-arm :arm-attachment-angle (deg-to-rad 0))
     :accessor rightarm)
   ;(leftarm
   ; :initform (make-instance ‘human-arm :arm-attachment-angle (deg-to-rad 180))   ;
:accessor leftarm)
))

(defmethod initialize ((person human))
   (transform-node-list (body person))
   (initialize-arm (rightarm person)(body person)))

(defun jack-video (draw-color)
   (setf jack-1 (make-instance ‘human))
   (initialize jack-1)
   (create-video-camera-1)
   (setf jack-color draw-color))

; this is the new-picture method for the “video-camera”, Not “camera”
(defmethod new-picture ((camera video-camera) (person human) draw-color)
   (erase-image-window camera)
   (take-picture camera person draw-color)
   (expose-image camera))

(defmethod take-picture ((camera camera) (person human) draw-color)
   (take-picture camera (body person) draw-color)
   (take-picture-rightarm camera person draw-color))

(defmethod move-incremental ((person human) increment-list)
   (move-incremental (body person) (first increment-list))
   (move-incremental  (rightarm person) (second increment-list)))
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HUMAN-ARM.CL

;**************************************************************
;HUMAN-ARM.CL defines the class human-arm and its associated
;dependent classes associated with the simulated Human kinematic model.
;This code was adapted by the author from Aqua-leg.cl which was originally
; written by Dr. McGhee.
;*************************************************************

(defclass human-arm ()
  ((arm-attachment-angle
    :initarg :arm-attachment-angle
    :accessor arm-attachment-angle)
   (link0
    :initform (make-instance ‘link0)
    :accessor link0)
   (upperarm
    :initform (make-instance ‘upperarm)
    :accessor upperarm)
  ; (forearm
  ;  :initform (make-instance ‘forearm)
  ;  :accessor forearm)
  ; (hand
  ;  :initform (make-instance ‘hand)
  ;  :accessor hand)
))

(defclass upperarm ()
  ((link1                             ;inboard axis is shoulder azimuth axis
    :initform (make-instance ‘link1)
    :accessor link1)
   (link2
    :initform (make-instance ‘link2)  ;inboard axis is shoulder elevation axis
    :accessor link2)))

;(defclass forearm ()
;   ((link3
;      :initform (make-instance ‘link3) ;inboard axis is elbow axis
;      :accessor link3)
;    (link4
;      :initform (make-instance ‘link4) ;inboard axis is forearm roll axis
;      :accessor link4)))

;(defclass hand ()
;   ((link5
;     :initform (make-instance ‘link5) ;inboard axis is hand azimuth axis
;     :accessor link5)
;    (link6
;     :initform (make-instance ‘link6) ;inboard axis is hand elevation axis
;     :accessor link6)
;    (link7
;     :initform (make-instance ‘link7) ;inboard axis is hand roll axis
;     :accessor link7)))
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(defmethod initialize-arm ((arm human-arm)(body static-human))
      (format t “Entering initialize ARM/human-arm.cl ~%”)
      (setf (inboard-link (link0 arm)) body)
      (setf (inboard-link (link1 (upperarm arm)))
                          (link0 arm))
      (setf (inboard-link (link2 (upperarm arm)))
                          (link1 (upperarm arm)))
     ;(setf (inboard-link (link3 (forearm arm)))
     ;                    (link2 (upperarm arm)))
     ;(setf (inboard-link (link4 (forearm arm)))
     ;                    (link3 (forearm arm)))
     ;(setf (inboard-link (link5 (hand arm)))
     ;                    (link4 (forearm arm)))
     ;(setf (inboard-link (link6 (hand arm)))
     ;                    (link5 (hand arm)))
     ;(setf (inboard-link (link7 (hand arm)))
     ;                    (link6 (hand arm)))

     (setf (reference-link (sensor (link2 (upperarm arm))))
                         (link2 (upperarm arm)))

     (rotate-link (link0 arm)
                         (arm-attachment-angle arm))
     (rotate-link (link1 (upperarm arm))
                         (joint-angle (link1 (upperarm arm))))
     (rotate-link (link2 (upperarm arm))
                         (joint-angle (link2 (upperarm arm))))
     ;(rotate-link (link3 (forearm arm))
     ;              (joint-angle (link3 (forearm arm))))
     ;(rotate-link (link4 (forearm arm))
     ;              (joint-angle (link4 (forearm arm))))
     ;(rotate-link (link5 (hand arm))
     ;              (joint-angle (link5 (hand arm))))
     ;(rotate-link (link6 (hand arm))
     ;              (joint-angle (link6 (hand arm))))
     ;(rotate-link (link7 (hand arm))
     ;              (joint-angle (link7 (hand arm))))

     (format t “DONE initialize ARM/human-arm.cl ~%”))

(defmethod take-picture-rightarm ((camera camera) (person human) draw-color)
  (take-picture camera (link0 (rightarm person)) draw-color)
  (take-picture camera (link1 (upperarm (rightarm person))) draw-color)
  (take-picture camera (link2 (upperarm (rightarm person))) *magenta*)
    ;(take-picture camera (link2 arm) draw-color)
    ;(take-picture camera (link3 arm) draw-color)
    ;(take-picture camera (link3 arm) *magenta*)
    ;(take-picture camera (link4 arm) *green*)
    ;(take-picture camera (link4 arm) draw-color)
    ;(take-picture camera (link5 arm) draw-color)
    ;(take-picture camera (link5 arm) *green*)
    ;(take-picture camera (link6 arm) draw-color)
    ;(take-picture camera (link7 arm) *yellow*)
)
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(defmethod move-incremental ((arm human-arm) increment-list)
   (rotate-link (link0 arm) (arm-attachment-angle arm))
   (rotate-link (link1 (upperarm arm))
                (+ (first increment-list) (joint-angle
                       (link1 (upperarm arm)))))
   (rotate-link (link2 (upperarm arm))
                (+ (second increment-list) (joint-angle
                       (link2 (upperarm arm)))))
  ;(rotate-link (link3 (forearm arm))
  ;             (+ (third increment-list) (joint-angle
  ;                    (link3 (forearm arm)))))
  ;(rotate-link (link4 (forearm arm))
  ;             (+ (fourth increment-list) (joint-angle
  ;                    (link4 (forearm arm)))))
  ;(rotate-link (link5 (hand arm))
  ;             (+ (fifth increment-list) (joint-angle
  ;                    (link5 (hand arm)))))
  ;(rotate-link (link6 (hand arm))
  ;             (+ (sixth increment-list) (joint-angle
  ;                    (link6 (hand arm)))))
  ;(rotate-link (link7 (hand arm))
  ;             (+ (seventh increment-list) (joint-angle
  ;                    (link7 (hand arm)))))
)
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LINK.CL

;*************************************************************
;LINK.CL contains the code necessary to define a link, rotary link, and
;sliding link associated with the simulated Human kinematic model.
;This code was written by Dr. McGhee.
;*************************************************************

(defclass link (rigid-body)
  ((motion-limit-flag
    :initform nil
    :accessor motion-limit-flag)
   (inboard-link-length
    :initarg :inboard-link-length
    :accessor inboard-link-length)
   (inboard-twist-angle
    :initarg :inboard-twist-angle
    :accessor inboard-twist-angle)
   (joint-displacement
    :initarg :joint-displacement
    :accessor joint-displacement)
   (joint-angle
    :initarg :joint-angle
    :accessor joint-angle)
   (inboard-link
    :initarg :inboard-link
    :accessor inboard-link)
   (A-matrix
    :accessor A-matrix)))

(defclass rotary-link (link)
  ((min-joint-angle
    :initarg :min-joint-angle
    :accessor min-joint-angle)
   (max-joint-angle
    :initarg :max-joint-angle
    :accessor max-joint-angle)))

(defclass sliding-link (link)
  ((min-joint-displacement
    :initarg :min-joint-displacement
    :accessor min-joint-displacement)
   (max-joint-displacement
    :initarg :max-joint-displacement
    :accessor max-joint-displacement)))
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JACK-LINK.CL

;**************************************************************
;JACK-LINK.CL defines the classes Link0 through Link7 associated with
;the arm of the simulated Human kinematic model.
;This code was adapted by the author from Aqua-link.cl which was originally
;written by Dr. McGhee.
;*************************************************************

;these link parameters are based on Modified D-H Notation

;imaginary link
(defclass link0 (rotary-link)
  ((inboard-link-length :initform 0)
   (inboard-twist-angle :initform (deg-to-rad 0))
   (joint-displacement :initform 0)
   (joint-angle :initform (deg-to-rad 0))
   (min-joint-angle :initform (deg-to-rad -360))
   (max-joint-angle :initform (deg-to-rad 360))
   (node-list :initform ‘((0 0 0 1) (0 0 0 1) (0 0 0 1)))
   (polygon-list :initform ‘((1 2)))))

;  shoulder elevation
(defclass link1 (rotary-link)
  ((inboard-link-length :initform 0)
   (inboard-twist-angle :initform (deg-to-rad 0))
   (joint-displacement :initform 0)
   (joint-angle :initform (deg-to-rad 0))
   (min-joint-angle :initform (deg-to-rad -80))
   (max-joint-angle :initform (deg-to-rad 180))
   (node-list :initform ‘((0 0 0 1) (0 0 0 1) (0 0 0 1)))
   (polygon-list :initform ‘((1 2)))))

;  shoulder azimuth
(defclass link2 (rotary-link)
  ((inboard-link-length :initform 0)
   (inboard-twist-angle :initform (deg-to-rad 90))
   (joint-displacement :initform 0)
   (joint-angle :initform (deg-to-rad -90))
   (min-joint-angle :initform (deg-to-rad -90))
   (max-joint-angle :initform (deg-to-rad 160))
   (node-list :initform ‘((0 0 0 1) (0 0 0 1) (0 2.0 0 1)))
   (polygon-list :initform ‘((1 2)))
   (sensor
    :initform (make-instance ‘polhemus)
    :accessor sensor)))

;  forearm roll
;(defclass link3 (rotary-link)
;  ((inboard-link-length :initform 0)
;   (inboard-twist-angle :initform (deg-to-rad 90))
;   (joint-displacement :initform -2.0)
;   (joint-angle :initform (deg-to-rad -90))
;   (min-joint-angle :initform (deg-to-rad -180))
;   (max-joint-angle :initform (deg-to-rad 0))
;   (node-list :initform ‘((0 0 0 1) (0 0 0 1) (0 0 0 1)))
;   (polygon-list :initform ‘((1 2)))))
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; elbow
;(defclass link4 (rotary-link)
;  ((inboard-link-length :initform 0)
;   (inboard-twist-angle :initform (deg-to-rad 90))
;   (joint-displacement :initform 0)
;   (joint-angle :initform (deg-to-rad 180))
;   (min-joint-angle :initform (deg-to-rad 180))
;   (max-joint-angle :initform (deg-to-rad 350))
;   (node-list :initform ‘((0 0 0 1) (0 0 0 1) (0 0 -2.0 1)))
;   (polygon-list :initform ‘((1 2)))))

;  hand elevation
;(defclass link5 (rotary-link)
;  ((inboard-link-length :initform 0)
;   (inboard-twist-angle :initform (deg-to-rad 90))
;   (joint-displacement :initform -2.0)
;   (joint-angle :initform (deg-to-rad 90))
;   (min-joint-angle :initform (deg-to-rad 0))
;   (max-joint-angle :initform (deg-to-rad 180))
;   (node-list :initform ‘((0 0 0 1) (0 0 0 1) (0 0 0 1)))
;   (polygon-list :initform ‘((1 2)))))

;  hand roll
;(defclass link6 (rotary-link)
;  ((inboard-link-length :initform 0)
;   (inboard-twist-angle :initform (deg-to-rad 90))
;   (joint-displacement :initform 0)
;   (joint-angle :initform (deg-to-rad -90))
;   (min-joint-angle :initform (deg-to-rad -180))
;   (max-joint-angle :initform (deg-to-rad 0))
;   (node-list :initform ‘((0 0 0 1) (0 0 0 1) (1 0 0 1) (0.5 -0.5 0 1)))
;   (polygon-list :initform ‘((1 2) (1 3)))))

;  hand azimuth
;(defclass link7 (rotary-link)
;  ((inboard-link-length :initform 0)
;   (inboard-twist-angle :initform (deg-to-rad 90))
;   (joint-displacement :initform 0)
;   (joint-angle :initform (deg-to-rad 0))
;   (min-joint-angle :initform (deg-to-rad -30))
;   (max-joint-angle :initform (deg-to-rad 70))
;   (node-list :initform ‘((0 0 0 1) (0 0 0 1) (0 0 -2.0 1)))
;   (polygon-list :initform ‘((1 2)))))

(defmethod update-A-matrix ((link link))
  (with-slots (inboard-link-length inboard-twist-angle
               joint-displacement  joint-angle A-matrix) link
     (setf A-matrix (mdh-matrix
                     inboard-link-length
                     (cos inboard-twist-angle) (sin inboard-twist-angle)
                     joint-displacement
                     (cos joint-angle) (sin joint-angle)))
     (format t “A-matrix for ~a is : ~d ~%” link (A-matrix link))))



66

(defmethod rotate ((link rotary-link) angle)
  (setf (joint-angle link) angle)
  (update-A-matrix link)
  (format t “H-matrix for ~d is : ~d ~%” (inboard-link link)
                                         (H-matrix (inboard-link link)))
  (setf (H-matrix link) (matrix-multiply (H-matrix (inboard-link link))
                                         (A-matrix link)))
  (format t “H-matrix for ~d is : ~d ~%” link (H-matrix link))
  (transform-node-list link)
  (format t “joint angle is ~a ~% “ (joint-angle link)))

(defmethod rotate-link ((link rotary-link) angle)
  (cond ((> angle (max-joint-angle link))
                                   (rotate link (max-joint-angle link))
                                   (setf (motion-limit-flag link) t))
        ((< angle (min-joint-angle link))
                                   (rotate link (min-joint-angle link))
                                   (setf (motion-limit-flag link) t))
        (t (rotate link angle) (setf (motion-limit-flag link) nil))))
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POLHEMUS.CL

;***************************************************************
;POLHEMUS.CL defines the polhemus class which simulates the functionality
;of real body-mounted sensors. This class includes functions which perform
;inverse kinematics for the arm of the Human kinematic model.
;This code was written by the author.
;****************************************************************

(defclass polhemus (rigid-body)
  ((posorient
     :initform ‘(0 0 0 0 0 0)
     :initarg : posorient
     :accessor posorient)
   (reference-link
     :initarg :reference-link
     :accessor reference-link)
   (quaternion-flag
     :initform 0
     :initarg :quaternion-flag
     :accessor quaternion-flag)
   (position-flag
     :initform 1
     :initarg :position-flag
     :accessor position-flag)
   (euler-angle-flag
     :initform 0
     :initarg :euler-angle-flag
     :accessor euler-angle-flag)
   (direction-cosine-flag
     :initform 1
     :initarg :direction-cosine-flag
     :accessor direction-cosine-flag)))

(defmethod read-sensor (sensor polhemus)
   (format t “ H-matrix for the sensor : ~d ~%”
                 (H-matrix sensor))
   (format t “ H-matrix for ~d : ~d ~%”
                 (reference-link sensor)
                 (H-matrix (reference-link sensor)))
   (setf (H-matrix sensor) (H-matrix (reference-link sensor)))
   (format t “ H-matrix for the sensor : ~d ~%”
                 (H-matrix sensor)))
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(defmethod H-to-euler (sensor polhemus)
    (format t “I am in H-to-Euler function.~%”)
    ;extract a1,a2,a3,b3,c3 from homogeneous matrix
   (let* ((a1 (first (first H-matrix)))
          (a2 (first (second H-matrix)))
          (a3 (first (third H-matrix)))
          (b3 (second (third H-matrix)))
          (c3 (third (third H-matrix))))
   (format t “H-matrix = ~a ~%” H-matrix)
   (format t “a1 = ~a ~%” a1)
   (format t “a2 = ~a ~%” a2)
   (format t “a3 = ~a ~%” a3)
   (format t “b3 = ~a ~%” b3)
   (format t “c3 = ~a ~%” c3)
   (setf new-elevation (asin (- a3)))
   (setf new-azimuth (*(acos(/ a1 (cos new-elevation))) (signum a2)))
   (setf new-roll (*(acos(/ c3 (cos new-elevation))) (signum b3))))
   (format t “azimuth = ~a ~%” new-azimuth)
   (format t “elevation = ~a ~%” new-elevation)
   (format t “roll = ~a ~%” new-roll)
   (setf orientation (list new-azimuth new-elevation new-roll))
   (format t “Euler angles are ~a ~%” orientation))

(defmethod H-to-jack ((sensor polhemus) (person human))
    (format t “I am in H-to-jack function.~%”)
    (format t “The sensor is on ~a ~%” (reference-link sensor))
    (read-sensor sensor)
    (setf inv-hmatrix (inverse-H (H-matrix (body person))))
    (format t “inverse body H matrix = ~a ~%” inv-hmatrix)
    (setf T-matrix (matrix-multiply inv-hmatrix (H-matrix sensor)))
    (format t “T matrix = ~a ~%” T-matrix)

   ;extract c1, b2 from T matrix, during IK
   (let* ((c1 (third (first T-matrix)))
          (c2 (third (second T-matrix)))
          (a3 (first (third T-matrix)))
          (b3 (second (third T-matrix))))

    (format t “c1 = ~a ~%” c1)
    (format t “c2 = ~a ~%” c2)
    (format t “a3 = ~a ~%” a3)
    (format t “b3 = ~a ~%” b3)

    (setf theta1 (atan c1 (- c2)))
    (setf theta2 (atan a3 b3)))

    (format t “joint angle for link1 = ~a ~%” theta1)
    (format t “joint angle for link2 = ~a ~%” theta2))
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KINEMATICS.CL

;****************************************************************
;KINEMATICS.CL defines the transformation and mathematical functions
;associated with the Human kinematic model.
;This code was written by Prof. McGhee (robot-kinematics.cl) with added
; functionality contributed by the author.
;****************************************************************

(defun transpose (matrix)           ;A matrix is a list of row vectors.
  (cond ((null (cdr matrix)) (mapcar ‘list (car matrix)))
        (t (mapcar ‘cons (car matrix) (transpose (cdr matrix))))))

(defun dot-product (vector-1 vector-2)  ;A vector is a list of numerical atoms.   (apply
‘+ (mapcar ‘* vector-1 vector-2)))

(defun vector-magnitude (vector) (sqrt (dot-product vector vector)))

(defun post-multiply (matrix vector)
  (cond ((null (rest matrix)) (list (dot-product (first matrix) vector)))
        (t (cons (dot-product (first matrix) vector)
                 (post-multiply (rest matrix) vector)))))

(defun pre-multiply (vector matrix)
  (post-multiply (transpose matrix) vector))

(defun matrix-multiply (A B)      ;A and B are conformable matrices.
  (cond ((null (cdr A)) (list (pre-multiply (car A) B)))
        (t (cons (pre-multiply (car A) B) (matrix-multiply (cdr A) B)))))

(defun chain-multiply (L)        ;L is a list of names of conformable matrices.
  (cond ((null (cddr L)) (matrix-multiply (eval (car L)) (eval (cadr L))))
        (t (matrix-multiply (eval (car L)) (chain-multiply (cdr L))))))

(defun cycle-left (matrix) (mapcar ‘row-cycle-left matrix))

(defun row-cycle-left (row) (append (cdr row) (list (car row))))

(defun cycle-up (matrix) (append (cdr matrix) (list (car matrix))))

(defun unit-vector (one-column length)         ;Column count starts at 1.
  (do ((n length (1- n))
       (vector nil (cons (cond ((= one-column n) 1) (t 0)) vector)))
      ((zerop n) vector)))

(defun unit-matrix (size)
  (do ((row-number size (1- row-number))
 (I nil (cons (unit-vector row-number size) I)))
      ((zerop row-number) I)))

(defun concat-matrix (A B)   ;A and B are matrices with equal number of rows.
  (cond ((null A) B)
        (t (cons (append (car A) (car B)) (concat-matrix (cdr A) (cdr B))))))

(defun augment (matrix)
  (concat-matrix matrix (unit-matrix (length matrix))))

(defun normalize-row (row) (scalar-multiply (/ 1.0 (car row)) row))
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(defun scalar-multiply (scalar vector)
  (cond ((null vector) nil)
        (t (cons (* scalar (car vector))
                 (scalar-multiply scalar (cdr vector))))))

(defun solve-first-column (matrix)        ;Reduces first column to (1 0 ... 0).
  (do* ((remaining-row-list matrix (rest remaining-row-list))
        (first-row (normalize-row (first matrix)))
        (answer (list first-row)
                (cons (vector-add (first remaining-row-list)
                                  (scalar-multiply (- (caar remaining-row-
list))                                                   first-row))
                      answer)))
       ((null (rest remaining-row-list)) (reverse answer))))

(defun vector-add (vector-1 vector-2) (mapcar ‘+ vector-1 vector-2))

(defun vector-subtract (vector-1 vector-2) (mapcar ‘- vector-1 vector-2))

(defun first-square (matrix)  ;Returns leftmost square matrix from argument.
(do ((size (length matrix))
       (remainder matrix (rest remainder))
       (answer nil (cons (firstn size (first remainder)) answer)))
      ((null remainder) (reverse answer))))

(defun firstn (n list)
  (cond ((zerop n) nil)
         (t (cons (first list) (firstn (1- n) (rest list))))))

(defun max-car-firstn (n list)
  (append (max-car-first (firstn n list)) (nthcdr n list)))

(defun matrix-inverse (M)
  (do ((M1 (max-car-first (augment M))
           (cond ((null M1) nil)
                 (t (max-car-firstn n (cycle-left (cycle-up M1))))))
       (n (1- (length M)) (1- n)))
      ((or (minusp n) (null M1)) (cond ((null M1) nil) (t (first-square M1))))
      (setq M1 (cond ((zerop (caar M1)) nil) (t (solve-first-column M1))))))

(defun max-car-first (L)   ;L is a list of lists. This function finds list with
  (cond ((null (cdr L)) L) ;largest car and moves it to head of list of lists.
        (t (if (> (abs (caar L)) (abs (caar (max-car-first (cdr L))))) L
               (append (max-car-first (cdr L)) (list (car L)))))))

(defun mdh-matrix (length costwist sintwist translate cosrotate sinrotate)
  (list (list cosrotate (- sinrotate) 0. length)
        (list (* sinrotate costwist) (* cosrotate costwist) (- sintwist)
              (- (* translate sintwist)))
        (list (* sinrotate sintwist) (* cosrotate sintwist) costwist
              (* translate costwist))
        (list 0. 0. 0. 1.)))

(defun homogeneous-transform (azimuth elevation roll x y z)
  (rotation-and-translation (sin azimuth) (cos azimuth) (sin elevation)
  (cos elevation) (sin roll) (cos roll) x y z))
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(defun rotation-and-translation (spsi cpsi sth cth sphi cphi x y z)
  (list (list (* cpsi cth) (- (* cpsi sth sphi) (* spsi cphi))
              (+ (* cpsi sth cphi) (* spsi sphi)) x)
        (list (* spsi cth) (+ (* cpsi cphi) (* spsi sth sphi))
              (- (* spsi sth cphi) (* cpsi sphi)) y)
        (list (- sth) (* cth sphi) (* cth cphi) z)
        (list 0. 0. 0. 1.)))

(defun inverse-H (H)         ;H is a 4x4 homogeneous transformation matrix.
  (let* ((minus-P (list (- (fourth (first H)))
                        (- (fourth (second H)))
                        (- (fourth (third H)))))
         (inverse-R (transpose (first-square (reverse (rest (reverse H))))))
         (inverse-P (post-multiply inverse-R minus-P)))
        (append (concat-matrix inverse-R (transpose (list inverse-P)))
                (list (list 0 0 0 1)))))

(defun law_cosines (adjside1 adjside2 opposite)
   (setf angle (acos (/(+(sqr adjside1)(sqr adjside2)(-(sqr opposite)))
                     (* 2 adjside1 adjside2))))
   (format t “Angle is ~a ~%” angle))

(defun euclid_dist (coord1 coord2)
   (setf x1 (first coord1))
   (setf y1 (second coord1))
   (setf z1 (third coord1))
   (setf x2 (first coord2))
   (setf y2 (second coord2))
   (setf z2 (third coord2))
   (setf hyp (sqrt(+(sqr(- x1 x2))(sqr(- y1 y2))(sqr(- z1 z2)))))
   (format t “Hypotenuse length is ~a ~%” hyp))

(defun sqr (x) (* x x))
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CAMERA.CL

;******************************************************************
; File: camera.cl                                       Franz Common LISP
;
; ** CAMERA CLASS DEFINITION **
; A Camera  “takes a picture” of rigid-body class objects
; and displays the image.  A sequence of images may be
; displayed by superimposing them or by first erasing the display
; window and then creating and displaying the next image.
;
; Requires: rigid-body.cl
;
; by Shirley Isakari  CS4314 Winter 1994  Final Project
; Modifications & enhancements to Prof. McGhee’s Strobe-Camera CLOS code
; *******************************************************************

(require :xcw)

(use-package :cw)  ; Note that this is required for use of mouse and color.
                   ; This forced renaming of some original functions, i.e.
                   ; move and translate. Causes some problem when compiling.

(cw:initialize-common-windows)

(defclass camera (rigid-body)
  ((focal-length
    :accessor focal-length
    :initform 6)
   (posture
    :accessor posture   ; azim elev roll x y z
    :initform (list 0 0 0 -300 0 0))
   (camera-window
    :accessor camera-window
    :initform (cw:make-window-stream :borders 5
                                     :left 300
                                     :bottom 300
                                     :width 300
                                     :height 400
                                     :title “Right Arm Articulation”
                                     :background-color blue
                                     :foreground-color white
                                     :activate-p t))
   (H-matrix
    :initform (homogeneous-transform 0 0 0 -300 0 0))
   (inverse-H-matrix
    :accessor inverse-H-matrix
    :initform (inverse-H (homogeneous-transform 0 0 0 -300 0 0)))
   (enlargement-factor
    :accessor enlargement-factor
    :initform 900)))

(defun create-camera-1 ()
  (setf camera-1 (make-instance ‘camera))
  (queue-mouse camera-1))
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(defmethod queue-mouse ((camera camera))
   (cw:modify-window-stream-method (camera-window camera) :left-button-down
        :after ‘mouse-handler)
   (cw:modify-window-stream-method (camera-window camera) :middle-button-
down
        :after ‘mouse-handler)
   (cw:modify-window-stream-method (camera-window camera) :right-button-down
        :after ‘mouse-handler))

; Note that mouse-handler requires names of instantiated objects:
; camera-1 jack-1.  Unable to modify argument list of this event-handler.
(defun mouse-handler (wstream cw:mouse-state &optional event)
   ;(format t “In mouse-handler button: ~a~%” (mouse-button-state))
   (cond ((eql (cw:mouse-button-state) 128)        ; Left-click
            (rotate-camera camera-1 -10)
         ;   (format t “Mouse Event: Left-click => rotate-camera~%”)
         )
         ((eql (cw:mouse-button-state) 129)        ; Left-click & CNTRL key
            (rotate-camera camera-1 10)
        ;    (format t “Mouse Event: CNTRL+Left-click => rotate-camera~%”)
         )
         ((eql (cw:mouse-button-state) 64)              ; Middle-click
            (zoom-camera camera-1 10)
        ;   (format t “Mouse Event: Middle-click => zoom-camera~%”)
         )
         ((eql (cw:mouse-button-state) 65)         ; Middle-click & CNTRL key
            (zoom-camera camera-1 -10)
        ;   (format t “Mouse Event: CNTRL+Middle-click => zoom-camera~%”)
         )
         ((eql (cw:mouse-button-state) 32)              ; Right-click
            (tilt-camera camera-1 -10)
        ;    (format t “Mouse Event: Right-click => tilt-camera~%”)
         )
         ((eql (cw:mouse-button-state) 33)         ; Right-click & CNTRL key
            (tilt-camera camera-1 10)
        ;     (format t “Mouse Event: CNTRL+Right-click => tilt-camera~%”)
         )
         (t nil))
   (new-picture camera-1 jack-1 jack-color))

; *** Defined global color constants **************************************
; To be used as the draw-color argument in take-picture and new-picture
; functionss (and also jack-picture, jack-video, jack-movie functions)

(defconstant *white* 0)
(defconstant *yellow* 1)
(defconstant *red* 2)
(defconstant *green* 3)
(defconstant *black* 4)
(defconstant *cyan* 5)
(defconstant *magenta* 6)
(defconstant *blue* 7)

; *** Draw picture functions *********************************************
(defmethod take-picture ((camera camera) (body rigid-body) draw-color)
  (let ((camera-space-node-list (mapcar #’(lambda (node-location)
         (post-multiply (inverse-H-matrix camera) node-location))
                        (transformed-node-list body))))
    (dolist (polygon (polygon-list body))
      (clip-and-draw-polygon camera polygon camera-space-node-list draw-color))))
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(defmethod erase-camera-window ((camera camera))
  (cw:clear (camera-window camera)))
(defmethod new-picture ((camera camera) (body rigid-body) draw-color)
   (erase-camera-window camera)
   (take-picture camera body draw-color))

(defmethod clip-and-draw-polygon
  ((camera camera) polygon node-coord-list draw-color)
  (do* ((initial-point (nth (first polygon) node-coord-list))
        (from-point initial-point to-point)
        (remaining-nodes (rest polygon) (rest remaining-nodes))
        (to-point (nth (first remaining-nodes) node-coord-list)
                  (if (not (null (first remaining-nodes)))
                      (nth (first remaining-nodes) node-coord-list))))
       ((null to-point)
              (draw-clipped-projection camera from-point initial-point draw-color))
       (draw-clipped-projection camera from-point to-point draw-color)))

(defmethod draw-clipped-projection ((camera camera)
        from-point to-point draw-color)
  (cond ((and (<= (first from-point) (focal-length camera))
              (<= (first to-point) (focal-length camera))) nil)
        ((<= (first from-point) (focal-length camera))
         (draw-line-in-window camera
           (perspective-transform camera (from-clip camera from-point to-point))
(perspective-transform camera to-point) draw-color))
        ((<= (first to-point) (focal-length camera))
         (draw-line-in-window camera
           (perspective-transform camera from-point)
           (perspective-transform camera (to-clip camera from-point to-point))
            draw-color))
        (t (draw-line-in-window camera
           (perspective-transform camera from-point)
           (perspective-transform camera to-point) draw-color))))

(defmethod from-clip ((camera camera) from-point to-point)
  (let ((scale-factor (/ (- (focal-length camera) (first from-point))
                         (- (first to-point) (first from-point)))))
       (list (+ (first from-point)
                (* scale-factor (- (first to-point) (first from-point))))
             (+ (second from-point)
                (* scale-factor (- (second to-point) (second from-point))))
             (+ (third from-point)
                (* scale-factor (- (third to-point) (third from-point)))) 1)))

(defmethod to-clip ((camera camera) from-point to-point)
  (from-clip camera to-point from-point))
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(defmethod draw-line-in-window ((camera camera) start end draw-color)
   (cond ((= 0 draw-color) (cw:draw-line (camera-window camera)
                (cw:make-position :x (first start) :y (second start))
                (cw:make-position :x (first end) :y (second end))
                :brush-width 5 :color white))
        ((= 1 draw-color) (cw:draw-line (camera-window camera)
                (cw:make-position :x (first start) :y (second start))
                (cw:make-position :x (first end) :y (second end))
                :brush-width 5 :color yellow))
 ((= 2 draw-color) (cw:draw-line (camera-window camera)
                (cw:make-position :x (first start) :y (second start))
                (cw:make-position :x (first end) :y (second end))
                :brush-width 5 :color magenta))
        ((= 3 draw-color) (cw:draw-line (camera-window camera)
                (cw:make-position :x (first start) :y (second start))
                (cw:make-position :x (first end) :y (second end))
                :brush-width 5 :color green))
        ((= 4 draw-color) (cw:draw-line (camera-window camera)
                (cw:make-position :x (first start) :y (second start))
                (cw:make-position :x (first end) :y (second end))
                :brush-width 5 :color red))
        ((= 5 draw-color) (cw:draw-line (camera-window camera)
                (cw:make-position :x (first start) :y (second start))
                (cw:make-position :x (first end) :y (second end))
                :brush-width 5 :color cyan))
        ((= 6 draw-color) (cw:draw-line (camera-window camera)
                (cw:make-position :x (first start) :y (second start))
                (cw:make-position :x (first end) :y (second end))
                :brush-width 5 :color black))
        ((= 7 draw-color) (cw:draw-line (camera-window camera)
                (cw:make-position :x (first start) :y (second start))
                (cw:make-position :x (first end) :y (second end))
                :brush-width 5 :color blue))))

(defmethod perspective-transform ((camera camera) point-in-camera-space)
  (let* ((enlargement-factor (enlargement-factor camera))
         (focal-length (focal-length camera))
         (x (first point-in-camera-space))  ;x axis is along optical axis
         (y (second point-in-camera-space)) ;y is out right side of camera
         (z (third point-in-camera-space))) ;z is out bottom of camera
        (list (+ (round (* enlargement-factor (/ (* focal-length y) x)))
                 150)                   ;to right in camera window
              (+ 150 (round (* enlargement-factor (/ (* focal-length (- z)) x))
                                 )))))  ;up in camera window

; *** Position camera functions ******************************************
(defmethod move-camera ((camera camera) azimuth elevation roll x y z)
  (setf (H-matrix camera) (homogeneous-transform azimuth elevation roll x y z))
  (setf (inverse-H-matrix camera) (inverse-H (H-matrix camera)))
  (format t “camera: ~a “ (posture camera)) )

(defmethod zoom-camera ((camera camera) zoom-amount)
  (setf (slot-value camera ‘enlargement-factor)
        (+ (slot-value camera ‘enlargement-factor) zoom-amount)))
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; Rotation in x-y plane about origin
(defmethod rotate-camera ((camera camera) angle-increment) ; in degrees
  (let* ((new-position (posture camera))
          (radius (sqrt (+ (* (fourth new-position) (fourth new-position))
                        (* (fifth new-position) (fifth new-position)))))
          (heading (atan (fourth new-position)
             (fifth new-position)))
          (angle (deg-to-rad angle-increment))
          (new-heading (+ heading angle)))
          (setf (first new-position) (- (first new-position) angle)
                (fourth new-position) (* radius (sin new-heading))
                (fifth new-position) (* radius (cos new-heading))
                (posture camera) new-position
                (H-matrix camera) (homogeneous-transform (first new-position)
                (second new-position) (third new-position) (fourth new-position)
(fifth new-position) (sixth new-position))
                (inverse-H-matrix camera) (inverse-H (H-matrix camera)))))

; Vertical tilting about origin in a plane perpendicular to x-y plane
; Max tilt (90 or -90 deg) when top or bottom view of x-y plane is achieved
(defmethod tilt-camera ((camera camera) angle-increment) ; in degrees
  (let* ((new-position (posture camera))
           (radius (sqrt (+ (* (fourth new-position) (fourth new-position))
                        (* (fifth new-position) (fifth new-position))
                        (* (sixth new-position) (sixth new-position)))))
           (tilt (atan (sixth new-position)
                 (sqrt (+  (* (fourth new-position) (fourth new-position))
                 (* (fifth new-position) (fifth new-position))))))
           (heading (atan (fourth new-position)
                 (fifth new-position)))
           (angle (deg-to-rad angle-increment))
           (new-tilt (cond ((< (abs (+ tilt angle)) tilt-limit) (+ tilt angle))
                       (t (cond ((minusp (+ tilt angle)) (* -1 tilt-limit))
                            (t tilt-limit))))))
         (setf (second new-position) new-tilt
           (fourth new-position)
              (cond ((= (abs tilt) (abs new-tilt) tilt-limit)
                (fourth new-position))
                (t (* radius (sin heading) (cos new-tilt))))
           (fifth new-position)
              (cond ((= (abs tilt) (abs new-tilt) tilt-limit)
                (fifth new-position))
(t (* radius (cos heading) (cos new-tilt))))
           (sixth new-position)
              (cond ((= (abs tilt) (abs new-tilt) tilt-limit)
                (sixth new-position))
                (t (* radius (sin new-tilt))))
           (posture camera) new-position
           (H-matrix camera) (homogeneous-transform (first new-position)
           (second new-position) (third new-position) (fourth new-position)
           (fifth new-position) (sixth new-position))
           (inverse-H-matrix camera) (inverse-H (H-matrix camera)))))

(defun deg-to-rad (angle) (* .017453292519943295 angle))
(defconstant tilt-limit (deg-to-rad 89.9))
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; *** Auxiliary functions  ***************************************
(defun kill ()
  (cw:kill-common-windows))

(defun reset-windows ()
  (kill)
  (cw:initialize-common-windows))
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VIDEO-CAMERA.CL

;******************************************************************
; File: video-camera.cl                                 Franz Common LISP
;
; ** VIDEO-CAMERA CLASS DEFINITION **
; A Video-camera is a camera which uses double buffering in order to
; display a sequence of images without flicker.
;
; by Shirley Isakari  CS4314 Winter 1994  Final Project
;
; Requires: camera.cl
;
; by Shirley Isakari  CS4314 Winter 1994  Final Project
; Adapted from Prof. Kwak’s Movie Camera flavor.
; *****************************************************************

(defclass video-camera (camera)
   ((image-window
    :accessor image-window
    :initform (cw:make-bitmap-stream :borders 5
                               :width 300
                               :height 400
                               :title “Right Arm Articulation”
                               :background-color blue
                               :foreground-color white
                               :activate-p nil))))

(defun create-video-camera-1 ()
  (setf camera-1 (make-instance ‘video-camera))
  (queue-mouse camera-1))

(defmethod new-picture ((camera video-camera) (body rigid-body) draw-color)
  (erase-image-window camera)
  (take-picture camera body draw-color)
  (expose-image camera))
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(defmethod draw-line-in-window ((camera video-camera) start end draw-color)
   (cond ((= 0 draw-color) (cw:draw-line (image-window camera)
                (cw:make-position :x (first start) :y (second start))
                (cw:make-position :x (first end) :y (second end))
                :brush-width 5 :color white))
        ((= 1 draw-color) (cw:draw-line (image-window camera)
                (cw:make-position :x (first start) :y (second start))
                (cw:make-position :x (first end) :y (second end))
                :brush-width 5 :color yellow))
        ((= 2 draw-color) (cw:draw-line (image-window camera)
                (cw:make-position :x (first start) :y (second start))
                (cw:make-position :x (first end) :y (second end))
                :brush-width 5 :color red))
        ((= 3 draw-color) (cw:draw-line (image-window camera)
                (cw:make-position :x (first start) :y (second start))
                (cw:make-position :x (first end) :y (second end))
                :brush-width 5 :color green))
        ((= 4 draw-color) (cw:draw-line (image-window camera)
                (cw:make-position :x (first start) :y (second start))
                (cw:make-position :x (first end) :y (second end))
                :brush-width 5 :color black))
        ((= 5 draw-color) (cw:draw-line (image-window camera)
                (cw:make-position :x (first start) :y (second start))
                (cw:make-position :x (first end) :y (second end))
                :brush-width 5 :color cyan))
        ((= 6 draw-color) (cw:draw-line (image-window camera)
                (cw:make-position :x (first start) :y (second start))
                (cw:make-position :x (first end) :y (second end))
                :brush-width 5 :color magenta))
        ((= 7 draw-color) (cw:draw-line (image-window camera)
                (cw:make-position :x (first start) :y (second start))
                (cw:make-position :x (first end) :y (second end))
                :brush-width 5 :color blue))))

(defmethod expose-image ((camera video-camera))
  (cw:bitblt (image-window camera) 0 0 (camera-window camera) 0 0))

(defmethod erase-image-window ((camera video-camera))
  (cw:clear (image-window camera)))
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APPENDIX B.  EDITED LISP EXECUTION SCRIPT

Script started on Wed Aug 30 23:02:26 1995

;; Copyright Franz Inc., Berkeley, CA, USA
;; Unpublished.  All rights reserved under the copyright laws
;; of the United States.

user(1): (load “load-files.cl”)
  (load-jack)
(jack-video *black*)  ; Loading /workd/waldrop/cs4314.dir/polhemus.dir/load-

files.cl.
t
user(2): ; Loading /workd/waldrop/cs4314.dir/polhemus.dir/rigid-body.cl.
; Loading /workd/waldrop/cs4314.dir/polhemus.dir/link.cl.
; Loading /workd/waldrop/cs4314.dir/polhemus.dir/camera.cl.
; Loading /workd/waldrop/cs4314.dir/polhemus.dir/video-camera.cl.
; Loading /workd/waldrop/cs4314.dir/polhemus.dir/kinematics.cl.
; Loading /workd/waldrop/cs4314.dir/polhemus.dir/human.cl.
; Loading /workd/waldrop/cs4314.dir/polhemus.dir/human-arm.cl.
; Loading /workd/waldrop/cs4314.dir/polhemus.dir/jack-link.cl.
; Loading /workd/waldrop/cs4314.dir/polhemus.dir/polhemus.cl.
; Loading /workd/waldrop/cs4314.dir/polhemus.dir/demo-jack.cl.
t
user(3): (new-picture camera-1 jack-1 0)
             (zoom-camera camera-1 10)
             (tilt-camera camera-1 -30)
             (rotate-camera camera-1 180)
             (new-picture camera-1 jack-1 0)

user(9): (move-incremental jack-1 ‘((0 0 0 0 0 0) (0.1 0.5)))

A-matrix for #<link1> is : ((0.9950042 -0.09983342 0 0)
                            (0.09983342 0.9950042 0.0 0.0)
                            (0.0 0.0 1.0 0.0) (0 0 0 1))
H-matrix for #<link0> is : ((1.0 0.0 0.0 0.0) (0.0 1.0 0.0 0.0)
                            (0.0 0.0 1.0 0.0)(0.0 0.0 0.0 1.0))
H-matrix for #<link1> is : ((0.9950042 -0.09983342 0.0 0.0)
                            (0.09983342 0.9950042 0.0 0.0)
                            (0.0 0.0 1.0 0.0) (0.0 0.0 0.0 1.0))

joint angle is 0.1
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 A-matrix for #<link2> is : ((0.4794255 0.8775826 0 0)
                             (3.8360354e-8 -2.0956352e-8 -1.0 0.0)
                             (-0.8775826 0.4794255 -4.371139e-8 0.0)
                             (0 0 0 1))
H-matrix for #<link1> is : ((0.9950042 -0.09983342 0.0 0.0)
                            (0.09983342 0.9950042 0.0 0.0)
                            (0.0 0.0 1.0 0.0)
                            (0.0 0.0 0.0 1.0))
H-matrix for #<link2> is : ((0.47703037 0.8731984 0.09983342 0.0)
                            (0.047862723 0.087612055 -0.9950042 0.0)
                            (-0.8775826 0.4794255 -4.371139e-8 0.0)
                            (0.0 0.0 0.0 1.0))

joint angle is -1.0707964

user(11): (H-to-jack (sensor (link2 (upperarm (rightarm jack-1)))) jack-1)

The sensor is on #<link2>
 H-matrix for #<link2> : ((0.47703037 0.8731984 0.09983342 0.0)
                          (0.047862723 0.087612055 -0.9950042 0.0)
                          (-0.8775826 0.4794255 -4.371139e-8 0.0)
                          (0.0 0.0 0.0 1.0))
 H-matrix for the sensor : ((0.47703037 0.8731984 0.09983342 0.0)
                            (0.047862723 0.087612055 -0.9950042 0.0)
                            (-0.8775826 0.4794255 -4.371139e-8 0.0)
                            (0.0 0.0 0.0 1.0))
inverse body H matrix = ((1.0 0.0 0.0 0.0) (0.0 1.0 0.0 0.0)
                         (0.0 0.0 1.0 0.0) (0 0 0 1))
T matrix = ((0.47703037 0.8731984 0.09983342 0.0)
            (0.047862723 0.087612055 -0.9950042 0.0)
            (-0.8775826 0.4794255 -4.371139e-8 0.0)
            (0.0 0.0 0.0 1.0))
c1 = 0.09983342
c2 = -0.9950042
a3 = -0.8775826
b3 = 0.4794255
joint angle for link1 = 0.1
joint angle for link2 = -1.0707964

ser(12): (move-incremental jack-1 ‘((0 0 0 0 0 0) (0.2 0.6)))

A-matrix for #<link0> is : ((1.0 0.0 0 0) (0.0 1.0 0.0 0.0)
                            (0.0 0.0 1.0 0.0) (0 0 0 1))
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H-matrix for #<static-human> is : ((1.0 0.0 0.0 0.0) (0.0 1.0 0.0 0.0)
                                   (0.0 0.0 1.0 0.0)(0.0 0.0 0.0 1.0))
H-matrix for #<link0> is : ((1.0 0.0 0.0 0.0) (0.0 1.0 0.0 0.0)
                           (0.0 0.0 1.0 0.0) (0.0 0.0 0.0 1.0))

joint angle is 0.0
 A-matrix for #<link1> is : ((0.9553365 -0.29552022 0 0)
                             (0.29552022 0.9553365 0.0 0.0)
                             (0.0 0.0 1.0 0.0) (0 0 0 1))
H-matrix for #<link0> is : ((1.0 0.0 0.0 0.0) (0.0 1.0 0.0 0.0)
                            (0.0 0.0 1.0 0.0)(0.0 0.0 0.0 1.0))
H-matrix for #<link1> is : ((0.9553365 -0.29552022 0.0 0.0)
                            (0.29552022 0.9553365 0.0 0.0)
                            (0.0 0.0 1.0 0.0) (0.0 0.0 0.0 1.0))

joint angle is 0.3

A-matrix for #<link2> is : ((0.89120734 0.45359614 0 0)
                             (1.9827317e-8 -3.895591e-8 -1.0 0.0)
                             (-0.45359614 0.89120734 -4.371139e-8 0.0)
                             (0 0 0 1))
H-matrix for #<link1> is : ((0.9553365 -0.29552022 0.0 0.0)
                            (0.29552022 0.9553365 0.0 0.0)
                            (0.0 0.0 1.0 0.0) (0.0 0.0 0.0 1.0))
H-matrix for #<link2> is : ((0.8514029 0.43333697 0.29552022 0.0)
                            (0.26336983 0.13404681 -0.9553365 0.0)
                            (-0.45359614 0.89120734 -4.371139e-8 0.0)
                            (0.0 0.0 0.0 1.0))

joint angle is -0.47079635

user(14): (H-to-jack (sensor (link2 (upperarm (rightarm jack-1)))) jack-1)

The sensor is on #<link2>
 H-matrix for #<link2> : ((0.8514029 0.43333697 0.29552022 0.0)
                          (0.26336983 0.13404681 -0.9553365 0.0)
                          (-0.45359614 0.89120734 -4.371139e-8 0.0)
                          (0.0 0.0 0.0 1.0))
 H-matrix for the sensor : ((0.8514029 0.43333697 0.29552022 0.0)
                            (0.26336983 0.13404681 -0.9553365 0.0)
                            (-0.45359614 0.89120734 -4.371139e-8 0.0)
                            (0.0 0.0 0.0 1.0))
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inverse body H matrix = ((1.0 0.0 0.0 0.0) (0.0 1.0 0.0 0.0)
                         (0.0 0.0 1.0 0.0) (0 0 0 1))
T matrix = ((0.8514029 0.43333697 0.29552022 0.0)
            (0.26336983 0.13404681 -0.9553365 0.0)
            (-0.45359614 0.89120734 -4.371139e-8 0.0)
            (0.0 0.0 0.0 1.0))
c1 = 0.29552022
c2 = -0.9553365
a3 = -0.45359614
b3 = 0.89120734
joint angle for link1 = 0.3
joint angle for link2 = -0.47079635

user(15): (move-incremental jack-1 ‘((0 0 0 0 0 0) (0.3 0.7)))

 A-matrix for #<link0> is : ((1.0 0.0 0 0) (0.0 1.0 0.0 0.0)
                             (0.0 0.0 1.0 0.0) (0 0 0 1))
H-matrix for #<static-human> is : ((1.0 0.0 0.0 0.0) (0.0 1.0 0.0 0.0)
                                   (0.0 0.0 1.0 0.0)(0.0 0.0 0.0 1.0))
H-matrix for #<link0> is : ((1.0 0.0 0.0 0.0) (0.0 1.0 0.0 0.0)
                            (0.0 0.0 1.0 0.0)(0.0 0.0 0.0 1.0))
joint angle is 0.0
 A-matrix for #<link1> is : ((0.8253356 -0.5646425 0 0)
                             (0.5646425 0.8253356 0.0 0.0)
                             (0.0 0.0 1.0 0.0) (0 0 0 1))
H-matrix for #<link0> is : ((1.0 0.0 0.0 0.0) (0.0 1.0 0.0 0.0)
                            (0.0 0.0 1.0 0.0) (0.0 0.0 0.0 1.0))
H-matrix for #<link1> is : ((0.8253356 -0.5646425 0.0 0.0)
                            (0.5646425 0.8253356 0.0 0.0)
                            (0.0 0.0 1.0 0.0) (0.0 0.0 0.0 1.0))

joint angle is 0.6
 A-matrix for #<link2> is : ((0.9738476 -0.22720206 0 0)
                             (-9.931317e-9 -4.256823e-8 -1.0 0.0)
                             (0.22720206 0.9738476 -4.371139e-8 0.0)
                             (0 0 0 1))
H-matrix for #<link1> is : ((0.8253356 -0.5646425 0.0 0.0)
                            (0.5646425 0.8253356 0.0 0.0)
                            (0.0 0.0 1.0 0.0) (0.0 0.0 0.0 1.0))
H-matrix for #<link2> is : ((0.8037511 -0.18751793 0.5646425 0.0)
                            (0.54987574 -0.12828797 -0.8253356 0.0)
                            (0.22720206 0.9738476 -4.371139e-8 0.0)
                            (0.0 0.0 0.0 1.0))
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joint angle is 0.22920364

user(17): (H-to-jack (sensor (link2 (upperarm (rightarm jack-1)))) jack-1)

The sensor is on #<link2>
 H-matrix for #<link2> : ((0.8037511 -0.18751793 0.5646425 0.0)
                          (0.54987574 -0.12828797 -0.8253356 0.0)
                          (0.22720206 0.9738476 -4.371139e-8 0.0)
                          (0.0 0.0 0.0 1.0))
 H-matrix for the sensor : ((0.8037511 -0.18751793 0.5646425 0.0)
                            (0.54987574 -0.12828797 -0.8253356 0.0)
                            (0.22720206 0.9738476 -4.371139e-8 0.0)
                            (0.0 0.0 0.0 1.0))
inverse body H matrix = ((1.0 0.0 0.0 0.0) (0.0 1.0 0.0 0.0)
                         (0.0 0.0 1.0 0.0) (0 0 0 1))
T matrix = ((0.8037511 -0.18751793 0.5646425 0.0)
            (0.54987574 -0.12828797 -0.8253356 0.0)
            (0.22720206 0.9738476 -4.371139e-8 0.0) (0.0 0.0 0.0 1.0))
c1 = 0.5646425
c2 = -0.8253356
a3 = 0.22720206
b3 = 0.9738476
joint angle for link1 = 0.6
joint angle for link2 = 0.22920364

user(18): (exit)
; killing “Default Window Stream Event Handler”
; killing “X11 event dispatcher”
; killing “Initial Lisp Listener”
; Exiting Lisp
[1;7mlike:/workd/waldrop/cs4314.dir/polhemus.dir>>exit
script done on Wed Aug 30 23:06:36 1995
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